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Abstract— The PAWiS (Power Aware Wireless Sensors) simu-
lation framework facilitates design and simulation of wireless
sensor network models. The main focus is given to power
aware computing and therefore it can capture causes resulting
in inefficiencies. The simulation framework covers all system
aspects comprising of all layers of the communication system,
the targeted class of application itself, the power supply and
energy management, the central processing unit (CPU) and the
sensor-actuator interface.

I. INTRODUCTION

The PAWiS Simulation Framework assists in development
and especially modelling, simulation and optimization of
Wireless Sensor Networks (WSN) nodes and network proto-
cols. The internal structure of nodes as well as communication
between them are simulated. The wide range of applications
that can be simulated begins with simple applications like
tiny sensor nodes (e.g. the TinyMote [Roe04]), tire pressure
monitoring and car climate control to as complex systems as
home entertainment (e.g. Sindrion).

The internal structure of a node is built as a virtual
prototype. This means that its function, the timing behavior
and power consumption as well as failures are simulated.
With the true top down development methodology, the design
starts at a functional specification and implementation level.
Guided by requirements, the design is refined via architectural
models down to models reflecting the actual implementation.
On the other hand, physical constraints affect the functional
and architectural designs from bottom up.

II. WORK FLOW

The WSN node is split into functional blocks (physical,
MAC, routing and application layer, CPU, serial interface,
AD converters, timer and so on). Each of these blocks is
mapped to modules in the simulation. For every functional
block its module type is defined which comprises its name
and the standardized interfaces. For each of the module types
several different implementations can be prepared.

Initially the node is composed from a module implementa-
tion of a certain module type out of a module implementations
library. Then the modules are configured (e.g. clock frequency

of the CPU, resolution of the ADC) to meet the target platform
requirements. After that the model is simulated and the results
are evaluated and potentially refined for further simulation
iterations to improve the desired parameters and the system’s
behavior.

These cyclic improvements of the models are called refine-
ment cycles and are the main track to enhance the development
[MGH05]. When these refinement cycles are completed, the
final outcome comprises

• the functional description and
• the architecture of the node, as well as
• the implementation details at various levels and
• the power specification of every module including its

components.

III. MODEL OPTIMIZATION

Several strategies for the optimization of the wireless sensor
system are available. First of all a system level optimization is
performed which includes node composition and modifications
of the entire system behavior (e.g. changing the network layout
or application pattern).

In parallel cross-layer optimization is performed where
more than one network layer is modified at a time. Probably
each of these changes itself would degrade the node perfor-
mance, but the interaction of them leads to an improvement
in overall behavior of the node.

All optimization is performed by applying the following
strategies.

• Exchange the actual module implementation for one
module type, i.e. a different implementation from the
library, e.g. a dual-slope, a Σ∆ or an SAR ADC. Another
example is choosing different MAC protocols.

• Partitioning of modules and/or functions by dividing the
task between hardware and software, digital and analog
or RF and baseband. For example a specific MAC pro-
tocol could be implemented in software or as dedicated
hardware acceleration unit. A combination of both is also
possible.

• The scale of a module, e.g. the resolution of an ADC or
the register count of a CPU.



• Parameterization of modules, e.g. the timing and the
transmission power of a radio transmitter.

IV. THE SIMULATION FRAMEWORK

A. Structure

The PAWiS framework is based on the OMNeT++ [Var01]
discrete event simulator and the C++ programming language.
Figure 1 depicts the structure of the framework from the
users view. The model programmer mostly interacts with
the framework and C++. Additionally basic knowledge of
concepts of OMNeT is required to comprehend the simulation
process.
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Fig. 1. Structure of the PAWiS simulation framework.

The node composition as well as the network layout are
specified in configuration files. Completed models can be
compiled (optionally with a GUI based on Tcl/Tk) to an
executable simulator. With the optional GUI the workflow
and communication of the model can be observed during
the simulation. Additionally a log file with power and timing
profile is generated for post-simulation analysis.

B. Basic Concepts

a) Modularization: A wireless sensor node is typically
split up into various modules, e.g. a CPU, the network protocol
layers (application, routing, MAC, physical), a timer and so on.
Each of these modules is implemented as a C++ class derived
from a framework base class. Decomposition of a sensor node
depends strongly on the design requirements. If the main focus
of the design is set to network layers it is recommended to
provide a module for each layer in order to analyze multiple
layer combinations. On the other hand a focus on hardware
units would result in modules representing hardware or any
applicable combination.

b) State machines: Every module is executing its specific
tasks which can be represented as finite state machines (FSM),
each one implemented as a class method of the user’s module
class. Within one module several FSMs can be implemented
and even run in parallel. The framework even allows to pass
parameters from and to such tasks.

c) Functional Interfaces: Control flow transitions be-
tween two modules are implemented as so called Functional
Interfaces. These are similar to blocking subroutine calls but
exceed module boundaries. Additionally modules can define
a wait condition depending on other modules or conditions to

be satisfied. This is complemented by a mechanism to trigger
a parallel task.

d) Environment: All nodes are placed at 3D positions
within an environment that manages the outer world of all
nodes including their surroundings and the RF channel. Further
implementations will include various obstacles and dynamic
objects within the environment.

e) Air: The Air is a subcomponent of the environment
that actually handles the RF channels, which are defined by the
node placement and the obstacles between them. The current
implementation of the Air handles attenuation effects with free
space propagation and isotropic antennas with uniform antenna
gain. A radio module can be implemented by deriving from
a framework class. Providing a few abstract methods enables
the model to get the full support of the Air class. The entire
communication including features like bit error rate (BER),
timing and SNR aspects is then handled by the framework.

f) Power Simulation: Every module reports its power
consumption during simulation. With the framework it is
possible to hierarchically combine power sources and adapt
their behavior to meet the target platform’s requirements.
These power profiles are the main output of the simulation
and are stored in a log file for further processing.

g) CPU: The submodules of a sensor node are usually
either implemented as firmware (software), i.e. executed by a
CPU, or as dedicated hardware. In order to model the power
and time consumption of software tasks the PAWiS framework
provides a CPU base class to be extended by the framework
user. All power simulation issues of the CPU are processed
by the framework.

h) Interrupts: The aforementioned CPU features basic
interrupt handling methods for multiple interrupt sources.
These sources, interrupt vectors and interrupt service routines
(ISRs) can be freely configured (by overriding methods) by
the user. The timing, dispatching and execution of an ISR is
handled by the framework.

The proposed framework is available in a preliminary
version and currently being evaluated with a model of a real
sensor node [MMR06].
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