
PAWiS Simulation Framework Overview

Johann Glaser and Daniel Weber

July 1, 2008

Abstract

The PAWiS Simulation Framework facilitates the
simulation of wireless sensor networks. This in-
cludes the internal structure of the sensor nodes
as well as the network connecting them. This
overview document describes the basic principles
of the framework and gives a short introduction
of its structure. A large part of this document
is taken by a tutorial including coding examples
which guide you to the usage of the framework.

1 Wireless Sensor Networks

Wireless sensor networks (WSN) are mainly used
in building automation, car interior devices, con-
tainer tracking, bridge and vulcan maintenance
and monitoring as well as geological surveillance.
The nodes comprise sensors for e.g. temperature,
humidity, insolation, strain gauge and so on.

All nodes communicate with each other via an
ad-hoc multi-hop network. This means that the
packets are routed from node to node and the
routing information accrues during the network
operation. Special MAC and routing protocols
were developed for this purpose. The proba-
bly best known is IEEE 802.15.4 ZigBee ([H+03],
[IEE03]), but even more specialized protocols ex-
ist (e.g. CSMA-MPS [MB04]).

The main development target is the low power
consumption of every node to supply them with
energy scavenging or from a single battery, yet
with long lifetimes as long as 10 years.

2 Simulation Framework

The PAWiS Simulation Framework assists you in
the development and especially the optimization
of WSN nodes and network protocols. The inter-
nal structure of the nodes as well as the commu-
nication between them are simulated. The wide
range of utilisation starts at tiny sensor nodes
(e.g. the TinyMote [Roe04]) and reaches via tire
pressure monitoring and car climate control to
as complex systems as home entertainment (e.g.
Sindrion [GSS+04]).

The internal structure of a node is built as a
virtual prototype. This means that its function,
the timing and power consumption as well as
communication and node failures are simulated.
With the true top down development methodol-
ogy (see Fig. 1) the design starts at a functional
speci�cation and implementation. Guided by re-
quirements the design is re�ned via architectural
models down to models re�ecting the actual im-
plementation. On the other hand, physical con-
straints e�ect the functional and architectural de-
signs from bottom up.

Figure 1: Top down design methodology.

3 Work �ow

The WSN node is split into functional blocks like
a physical, a MAC, a routing and an applica-
tion layer, a CPU, serial interface, AD convert-
ers, timer and so on. Each of these blocks is then
mapped to modules in the simulation. For ev-
ery functional block its module type is de�ned.
This comprises its name and the standardized in-
terfaces. For each of the module types several
di�erent implementations can be prepared.
The work �ow of the design and optimization

of a WSN with the PAWiS Simulation Frame-
work is depicted in Fig. 2. At the beginning the
node is composed from one module implementa-
tion per module type from the module implemen-

1

Figure 2: Re�nement cycles.

tations library. Then the modules are con�gured
(e.g., clock frequency of the CPU, resolution of
the ADC). In the next step the model is simu-
lated and the results are evaluated.

Based on the simulation results the individual
models are re�ned, i.e. their behaviour is imple-
mented in more detail and more accurately. Ad-
ditionally the modules' functions are altered to
approach to the design goals. The con�guration
of the models may be modi�ed too and then the
simulation is performed again. Alternatively the
composition of the total node may be changed, if
the current selection of module implementations
does not meet the design goals.

These cyclic improvements of the models are
called re�nement cycles and are the main track to
enhance the development. When these re�nement
cycles are completed, the �nal outcome comprises

� the function and

� the architecture of the node, as well as

� the implementation and

� the power speci�cation of every sub-module.

4 Optimization

Several strategies for the optimization of the wire-
less sensor system are available. First of all a
system level optimization is performed. This in-
cludes the node composition and even modi�ca-
tions of the whole system behavior like choosing
di�erent network layout or application patterns.
The system level optimization guides you to an
adequate system architecture.

In parallel cross-layer optimization is per-
formed. This means that more than one network
layer is modi�ed at a time. Probably each of
these changes alone would degrade the node per-
formance, but the interaction of them leads to an
improvement of the total node.

All this optimization is performed by applying
the following strategies.

� Exchange the actual module implementation
for one module type, i.e. a di�erent selection
from the library, e.g. a dual-slope, a Σ∆ or
an SAR ADC. Another example is choosing
di�erent MAC protocols.

� Partitioning of modules and/or functions by
dividing the task between hardware and soft-
ware, digital and analog or RF and baseband.
For example a speci�c MAC protocol could
be implemented in software or as a dedicated
hardware acceleration unit. A combination
of both is also possible.

� The scale of a module, e.g. the resolution of
an ADC or the register count of a CPU.

� Parameterization of modules, e.g. the tim-
ing, transmission power and bit rate of a ra-
dio transmitter.

5 The Framework

5.1 Structure

In Fig. 3 the basic structure and dependencies of
the PAWiS Framework are depicted. The frame-
work is based on the OMNeT++ discrete event
simulation system and the C++ programming
language. The model programmer mostly inter-
acts with the framework and C++.

The Framework requires the following tools:
OMNeT++ discrete event simulator 3.3 and
Doxygen 1.4.7. To compile on Unix machines
you need the GCC compiler 4.0 or 4.1, Autoconf
2.60a and Automake 1.9.6. On Windows the Mi-
crosoft Visual Studio version 7 or 8 are required.
Please consult the installation guide located at
https://clara.tuwien.ac.at/pawis/sim:doc.

2

https://clara.tuwien.ac.at/pawis/sim:doc

Figure 3: Structure of the PAWiS Framework.

5.2 Discrete Event Simulator

Since the PAWiS Simulation Framework is based
on the OMNeT++ Descrete Event Simulation
System, we have to discuss how its event pro-
cessing is working. Basically every module can
generate new events which are stored in the so
called Future Event List (FEL). The simulation
kernel steadily picks the earliest event (which has
the semantic of a message transported from net-
work node to node) from this FEL. The current
simulation time, which is stored in a variable, is
then set to this event's time and the event is de-
livered to the destination module.
The destination module may itself insert new

events into the FEL. As soon as this task has
�nished, the simulation kernel again consults the
FEL and takes the earliest event.
The simulation time therefore does not corre-

late to wall clock time, because it is only de�ned
by the events generated during simulation. For
simulations with large temporal distance between
the events, simulation time will elapse faster than
the wall clock time. Contrary, simulations with
dense temporal resolution, where the simulation
kernel has to execute many events and their han-
dlers, the simulation time may be slower than the
wall clock time.

5.3 Basic Concepts

5.3.1 Modularization

The wireless sensor node is split up into modules,
e.g. a CPU, the network protocol layers (applica-
tion, routing, MAC, physical), a timer and so on.
Each of these modules is implemented as a C++
class derived from PawisModule.

5.3.2 Tasks

Within one module several tasks can be imple-
mented and even run in parallel. The execution
within one task is sequential but all tasks are run-
ning concurrently. Every task is implemented as
one class method.

This concurrency is implemented as coopera-
tive multithreading, so every task has to de�ne
points where it passes execution to the simula-
tion kernel. That means that the program �ow is
stopped at this point and later continues there.
At these yield points the simulation time elapses.
Everything between two such yield points hap-
pens in the same instant of simulation time.

5.3.3 Functional Interfaces

Control �ow transitions between two modules are
implemented as so called Functional Interfaces.
These are similar to subroutine calls (see the
green arrows in Fig. 4). Every functional interface
is implemented as a task, so it can run in parallel
to the other tasks. Note that the invocation of a
functional interface starts this task and after the
task has �nished, the invocation returns. That
means that functional interfaces are not running
permanently but only when invoked.

Additionally at some points a module can de-
�ne a wait condition depending on another mod-
ule. This is complemented by a mechanism to
trigger a parallel task (see red arrows in Fig. 4).

Figure 4: Tasks inside modules and control �ow
across module borders.

3

5.3.4 CPU

The submodules of a sensor node are usually ei-
ther implemented as �rmware (software), i.e. are
executed by a CPU, or as dedicated hardware. Ev-
ery module can have several tasks, and the can be
mixed software and hardware tasks (e.g. the RF
transceiver hardware plus its driver). It is im-
portant to note that software tasks can not run
in parallel, since the CPU is only available once.
Therefore the control �ow is transferred from one
module to another (think of subroutine �call� and
�return� here) instead of triggered events.
To model the power and time consumption of

software tasks the ideal case is a CPU simulator
which is fed by the actual �rmware opcodes. Un-
fortunately this is very time consuming. There-
fore in the PAWiS framework the CPU simulation
is split into two parts.
The functional tasks of the �rmware are writ-

ten in pure C++ code inside of the task method
itself. The timing and power consumption part
is then �delegated� to the CPU module. It only
reports its power consumption (on behalf of the
real module) and delays execution for the esti-
mated processing time. This delegation is real-
ized as requireCpu(percentage integer, percent-
age �oat, percentage memory access, percentage
�ow control, duration). This call is one of the
exit points of task coroutines.
These requests include the estimated execu-

tion time of the �rmware code on the CPU. Now
think that the CPU of a given node should be re-
placed during the optimization process (e.g., use
an ARM instead of an MSP430) or change the
con�guration (e.g., use a faster crystal). This
would also require to modify all execution time
estimates in all modules of the node. To allows for
a CPU exchange without the need to adapt other
modules the execution time estimates are referred
to the so called norm CPU. This is an imaginary
but well de�ned CPU implementation (regarding
its performance). The actual CPU model scales
its processing time and power consumption ac-
cording to its individual properties and depend-
ing on the percentages of execution types.
The framework user has to implement the CPU

module as a C++ class derived from Cpu and
override several virtual methods. See Sec. 6.5 for
details.

5.3.5 Timing

Modeling time delays is di�erent in �rmware
and hardware modules. In hardware modules
just use a wait(duration) call. There are the
waitUntil() and waitOrUntil() calls which al-
low to wait for certain events.1 In �rmware mod-

1These wait() calls are exit points of the coroutine.

ules this is not allowed, because it would stand
for a wondrous jump in time.

How is a delay programmed in software? One
way is a simple delay loop. This is easily modeled
with a call to requireCpu(). Note that such a de-
lay must not be modeled as an actual loop in your
C++ code since it would only load your simula-
tion host CPU but doesn't advance the simulation
time.

More complicated delay loops may have a ded-
icated break condition to wait for a certain event
(i.e., a �ag set by an ISR or a dedicated timer
module). This can be implemented with the
requireCpuUntil() and requireCpuOrUntil()
methods.

Even more sophisticated delays utilize low
power modes of the CPU. This sets the CPU to a
low power mode which halts the execution until
an interrupt occurs. This will wake up the CPU
which then continues its operation.

Note that time only elapses in wait() and
requireCpu() calls. Every C++ code you place
between such calls virtually runs in the same time
instant, i.e. no time elapses.

5.3.6 Interrupts

The interrupt handling is implemented in several
steps. Within the modeled microcontroller nu-
merous interrupt sources exist. These come from
some other modules (e.g. a timer, an analog-
digital-converter, ...). They are mapped to inter-
rupt vectors. Every vector has a priority and an
interrupt service routine (ISR) assigned. Every-
thing except the registration of the ISRs is real-
ized within the CPUmodule (as described above).

Every (software) module can register its ISR
for an interrupt vector. When the interrupt
source triggers an interrupt request, the CPU
module maps it to the appropriate interrupt vec-
tor, checks its priority and then transfers con-
trol to the ISR. The currently running CPU task
(read: the delay and power consumption) is in-
terrupted and �nished later.

5.3.7 Environment

All nodes are placed at 3D positions within the
Environment. This manages the outer world of
all nodes including their surrounding and the RF
channel.

Besides the nodes themselves also other objects
like walls, �oors, trees, interferers, heaters, light
sources, ... reside within the environment. Ad-
ditionally global properties (e.g. the attenuation
exponent b (see Sec. 5.3.8)) are de�ned. Every-
thing is setup and con�gured with the scripting
interface.

4

Figure 5: The Environment with functions, ob-
jects and sensor nodes

5.3.8 Air

The Air is a subcomponent of the environment to
handle the RF channels, which are de�ned by the
node placement and the obstacles between them.
The RF signal is subject to wave propagation phe-
nomenons like attenuation, re�ection, refraction,
scattering and fading (multi-path propagation)
from the transmitter to the receiver.

Theory The current implementation of the Air
only handles attenuation e�ects, because the
other e�ects would require an enormous complex-
ity in the simulator. For free space propagation
the receipient power is de�ned by

PRx = PTxGTx (−−−−→ϕTx,Rx) ·

GRx (−−−−→ϕRx,Tx)
(
λ

4π

)2

d−b (1)

where GTx (−−−−→ϕTx,Rx) is the antenna gain of the
transmitter in the direction to the receiver and
GRx (−−−−→ϕRx,Tx) is the antenna gain of the receiver
in the direction to the transmitter. λ is the wave-
length, d is the distance between the two nodes
and b is the attenuation exponent. The latter
is usually 2 for ideal free space propagation, but
for indoor environments higher values like 3.5 are
more appropriate.
Alternatively the received power can be calcu-

lated by dividing the transmit power by the sur-
face of a sphere 4πd2 (replacing the exponent by
b) with radius equaling the distance of the receiver
and transmitter d. This �diluted� power density
is then multiplied by the antenna area ARx of the
receiver.

PRx = PTx
1

4π
d−bARx (2)

The attenuation from the transmitter j to re-
ceiver i is given by

Ai,j =
PRx,i

PTx,j
(3)

where i and j are the index of the node (i, j ∈
1, 2, . . . , n). Calculating the attenuation from any
node to every other node gives the adjacency ma-
trix

A =

A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n

...
...

. . .
...

An,1 An,2 · · · An,n

 (4)

Let the vectors
−−→
PTx and

−−→
PRx hold the trans-

mitted and received power of all n nodes, respec-
tively. Then the calculation of received power is
easily written by the matrix operation

−−→
PRx = A

−−→
PTx (5)

Since the results only make sense when a single
transmitter is active, only one value in

−−→
PTx is dif-

ferent from zero and the matrix multiplication in
(5) reduces to a single column scaling operation.
The adjacency matrix is a precisely de�ned in-

terface from the environment to the data com-
munication. For an actual environment setup A
is calculated. This is used during the network
simulation as shown in (5). Due to this simple
interface, A can also be calculated by an external
RF channel simulation tool.
The current implementation of the Air only

supports isotropic antennas with uniform antenna
gain. No obstacles are considered for the adja-
cency matrix, though explicitly given additional
attenuations between every pair of two nodes are
supported.
Every receiving node is noti�ed of a data packet

transmitted via the Air. This noti�cation con-
tains the receiver power. The node then calcu-
lates the signal to noise ratio (SNR) with its own
and the received noise power. From this SNR the
bit error ratio (BER) is derived. The BER is a
function of the SNR which depends on the modu-
lation format. From the BER the bit error count
is calculated.

Implementation The implementation is de-
scribed in Sec. 6.10.

5.3.9 Power Simulation

Every task simulates its power consumption. At
simulation startup it registers at its power sup-
ply module. This enables a hierarchy of power
distribution. During simulation the actual con-
sumption is calculated (by your C++ code) and
reported to the power supply. This propagates
up the supply tree and is �nally reported to the
central Power Meter.
The consumed power equals P = U · I. The

supply voltage U is provided by the supply mod-
ule. Every consumer can have di�erent electrical

5

behavior. i.e. the current I depends in di�er-
ent ways on the supply voltage. Currently three
kinds of power reporters are provided but you are
free to de�ne new ones.

� ConstantReporter: I = Iconst. The current
does not depend on the supply voltage.

� ResistiveReporter: I = U
R . The supply

current is proportional to the supply voltage,
typically as for a resistor.

� LinearReporter: I = Iconst + U
R . A constant

current plus a supply voltage dependant por-
tion.

� De�ne your own reporter by deriving from
the PowerReporter base class. This can im-
plement any non-linear current characteris-
tics you need.

The power supply module calculates its output
voltage depending on the output current, there-
fore di�erent source behaviors are possible too.
This results in a simple electrical network.
At any point in a hardware task you can set a

new power reporter and its characteristics. The
previous reporter is then replaced by a new one.
The reporter handles all supply voltage changes
according to its properties automatically.
Note that only tasks which simulate dedi-

cated hardware consume power on their own.
Tasks which simulate software tasks just use the
requireCPU() method. The CPU module will re-
port its power consumption and the additional
info for which task it is executing code.

6 Example

In this section we will discuss the implementation
of a simple application doing some processing in
a CPU and blinking a LED in parallel. This will
demonstrate all important concepts of the PAWiS
Framework. For the description of the Environ-
ment and the Air another example is introduced.

6.1 Modules

As shown in Fig. 6 the system is built of the fol-
lowing modules: The main program is running in
the Application module (�App�) which is a pure
software module. This is connected to the Timer
and the LED to invoke their functions via their
functional interfaces. All modules (except the
App) are supplied by the power source �LDO�
(low drop-out regulator). The timer can issue an
interrupt which interrupts the application pro-
gram and starts the ISR (interrupt service rou-
tine).

Figure 6: Modules of the LED example.

Every module is implemented as a C++
class derived from the PAWiS Framework
class PawisModule (see Lst. 1). Inside of
the class you have to use a special macro
Module_Class_Members(class, parent, 0) which
declares the constructor and some other internal
stu�. Its �rst parameter is always the name of
the class, the second parameter is the parent class
and the third must be 0.

In the class de�nition (see Lst. 3) you have to
add the macro Define_Module(class).

The class can contain as many member vari-
ables and methods as you like.

Listing 1: Class declaration of the PAWiS module
�Led� from led.h.

#include <memory>
#include <base/paModule.h>
#include "ledReporter.h"

using namespace pawis;

class Led : public PawisModule {
private:
bool m_bState;
std::auto_ptr<PowerSourceAdapter>
m_pPowerAdapter;

void set(TaskControl &pa_oControl);

virtual void onStartup();
virtual void onInit();

public:
Module_Class_Members(Led, PawisModule, 0)

};

There are two virtual methods which you can
override. They are automatically called upon
start of the simulation. onStartup() is �rst exe-
cuted for all modules, and then onInit() is exe-
cuted for all modules. Therefore in onStartup()
you have to register all your interfaces, power
sources, . . . o�ered to other modules. In
onInit() you can refer to the previously regis-
tered items (of other modules). Read on for some
examples.

6

6.1.1 The NED File

The module instantiation and connections be-
tween each other are described in the so called
NED �le. This is a text �le used by the under-
lying OMNeT++ framework to setup the whole
network.
A NED �le de�nes three types of objects which

are setup within a hierarchy. The highest level is
the network which we use to connect the individ-
ual nodes. It is declared in a block of network
name : top module endnetwork (see Lst. 2). See
also Sec. 5.3.7 how to build complex networks.
The next lower level are compound modules de-

clared with module name ... endmodule blocks.
They combine other compound or simple mod-
ules and set their parameters and interconnect.
Simple modules are the lowest level in the NED

hierarchy. These are the only items which ac-
tually implement functionality. Therefore they
are the only items which have individual C++
code provided by the programmer. That means
that you will concentrate on the implementation
of simple modules. To structure your network
nodes you de�ne compound modules in the NED
�le.
The NED �le is translated with the nedtool

tool (provided by OMNeT++) which creates a
C++ source �le with the post�x _n.cpp. This
contains auto-generated C++ class declarations
for the described compound modules and net-
works. It must be compiled the same way as your
other C++ source �les.
A network node is built as a compound mod-

ule (see LedNode in Lst. 2). You can de�ne one
or more di�erent types of network nodes. The
compound module representing the network (here
LedNetwork) can instanciate any number of these
nodes. Simply ensure that your module code
implements interoperability between the di�erent
kinds of nodes.

Listing 2: NED �le for the LED example from
Led.ned.

simple SimpleCpu
endsimple

simple Led
gates:
in: App_in;
out: App_out;

endsimple

simple App
gates:
in: Timer_in;
in: Led_in;
out: Timer_out;
out: Led_out;

endsimple

simple Timer
gates:
in: App_in;
out: App_out;

endsimple

simple Ldo
endsimple

simple Battery
endsimple

simple Config
parameters:
ConfigFile: string;

endsimple

module LedNode
parameters:
NodeId : const;

submodules:
cpu : SimpleCpu;
led : Led;
app : App;
timer : Timer;
ldo : Ldo;
battery : Battery;

connections:
app.Led_out --> led.App_in;
app.Led_in <-- led.App_out;
app.Timer_out --> timer.App_in;
app.Timer_in <-- timer.App_out;

endmodule

module LedNetwork
submodules:
config : Config
parameters:
ConfigFile = "";

ln1: LedNode
parameters:
NodeId = 1;

endmodule

network lednet : LedNetwork
endnetwork

6.1.2 Messages

Modules can commmunicate each other by send-
ing messages (through the corresponding gates).
Each abstraction layer requires a message class,
which is derived from the Pawis Framework
BaseMessage class. Each implementation in-
cludes the speci�c header �elds for each layer.
Messages can be easily implemented by writing
a simple .msg �le which is translated by the
opp_msgc OMNeT++ application into a C++ �le
with autogenerated methods to access the header
�elds.

7

6.2 Tasks

Every module is built of tasks. Each of these tasks
is implemented as a method inside of the mod-
ule's class. Their name can be chosen freely but
they must accept exactly one parameter of the
type TaskControl&. The return type is void (see
App::myMain() and App::onTimer() in Lst. 3).
The TaskControl& parameter holds an object

which is a unique representation of the task. It
contains the status and context of the task as well
as some task-related methods like invoke() (see
below).
Tasks are virtually running in parallel as de-

scribed in Sec. 5.3.2. Their execution leaves at
certain (de�ned) points (�yield�). The simulation
kernel then hands over control to other tasks. The
execution of the task is then continued where it
was interrupted.
Points where the execution is transferred to

other tasks are

� wait(delay)

� waitUntil(predicate)

� waitOrUntil(delay , predicate)

� requireCpu()

� requireCpuUntil()

� requireCpuOrUntil()

� invoke() and invokeReturn() with vari-
ous combinations of parameter types (see
Sec. 6.3.2).

Please see the Doxygen documentation of
TaskControl for details and the exact parameter
lists of these methods.
Within every task you can have loops, if and

switch conditions, ... Note that you must include
yield points as described above or return from the
method after performing the desired job. Other-
wise your C++ method will never give back con-
trol to the simulation kernel (this is why we call
this cooperative multitasking). When the method
exits (e.g. with return), the task is �nished.
Every task models either a dedicated hardware

block (e.g. a timer, an AD converter, ...) or some
software running on the CPU (e.g. the routing
layer of your protocol). Within one module you
can have as many tasks and mix hardware and
software tasks as you need.
All tasks can access the member variables of the

module class instance which are shared amongst
the tasks. This is even possible when the same
task method is running multiple times. For vari-
ables which are unique to every task instance
use the stack, i.e. declare local variables within
the method. Note that every task has its own

stack, which is limited. To set the stack size,
the functions startTask(), registerIsr() and
registerFunctionalInterface() o�er an addi-
tional parameter. Its default value currently is
32kB.

A task can be started in two di�erent ways.
Tasks that should �just run� from the beginning
on are started from the onInit() method (see
Lst. 3) using the startTask(name, task method,
params in, params out) call. Note that this func-
tion can be used anywhere and anytime to cre-
ate new tasks. Its �rst parameter is the method
(using a macro to cast to the proper type).
The second and third parameters are pointers to
ParameterList objects for input and output pa-
rameters, respectively. They can be �0� and are
discussed in detail with functional interfaces.

The second kind of task creation is using func-
tional interfaces and is described below.

A call to startTask() is always non-blocking
which means that the started task runs in parallel
and independently. The starter does not wait for
any condition (e.g. �nishing) of it.

Listing 3: Implementation of the PAWiS module
�App� from app.cpp showing a task.

#include "app.h"

Define_Module(App);

void App::onInit() {
// init member variables
// ...
// register ISRs
registerIsr(CAST_TASK(App::onTimer), 17,
"timer_isr");

// schedule initial task
startTask("main",CAST_TASK(App::myMain),0,0);

}

void App::onTimer(TaskControl &pa_oControl) {
// do our internal work
m_bLedState = !m_bLedState;

// set the LED
pa_oControl.requireCpu(0.5, 0.0, 0.2, 0.3,
0.001f);

pa_oControl.invoke("Led", "set", m_bLedState);

// setup new timer event
pa_oControl.requireCpu(0.5, 0.0, 0.3, 0.2,
0.005f);

pa_oControl.invoke("Timer", "start",
(unsigned int)(20));

++m_nCounter;
}

// predicate function for requireCpuOrUntil()
bool App::done() {
// test an external condition,

8

// e.g. ADC has finished conversion
if (m_nCounter > 2) {

return true;
}
return false;

}

void App::myMain(TaskControl &pa_oControl) {
// ...
// start the LED toggling
onTimer(pa_oControl);
// Before Start waiting 50ms or the predicate
pa_oControl.requireCpuOrUntil(0.1f,0.0f,0.0f,

0.9f, 0.05, CAST_PREDICATE(App::done));
// main program running infinitely
while (true) {

pa_oControl.setCpuState(
new SimpleCpu::CpuState(
SimpleCpu::CpuState::pmSleep));

pa_oControl.requireCpu(/* ... */, 1.0e-6);
}

}

6.3 Functional Interfaces

The Timer as well as the LED o�er a functional
interface each which is used by the Application
(red arrows in Fig. 6, method set() in Lst. 1 and
startTimer() in Lst. 4).

6.3.1 Setup

The functional interface must be registered
in onStartup() (and not in onInit()) with
registerFunctionalInterface(name, method,
multiInvokable) (see Lst. 4). The �rst parameter
is a string with the name of the interface (referred
to by other modules). The second parameter is
a casted pointer to the task method. The third
parameter tells the framework, if this functional
interface is intended to be invoked multiple times
in parallel. When set to false the framework
does additional sanity checks to warn the user of
multiple invocations.

6.3.2 Invocation

Other modules can then invoke the functional in-
terface with the method invoke(module, inter-
face, params in, params out) (see onTimer() in
Lst. 3). There are multiple overloaded versions
of invoke() for several combinations of parame-
ters as well as invokeReturn<typename>() meth-
ods for typed return values. This are convenience
functions that you don't have to setup a param-
eter list. For details please consult the Doxygen
documentation of TaskControl.
Whenever a functional interface is invoked from

another module, a new task is created and its
method (here Timer::startTimer()) is executed.

When this method returns, invoke() returns too
and execution of the caller continues. That means
that invoke() is always blocking (see both calls
of invoke()).

6.3.3 Parameters

The task App::onTimer() also shows how to sup-
ply parameters to a functional interface. The �rst
functional interface invocation to Led.set sup-
plies one parameter of type bool. Here one of the
above mentioned overloaded versions of invoke()
is used.
Alternatively a ParameterList object could be

created and the parameter(s) added with the
add<type>(value) template method. When the
invocation returns the input parameter list is con-
sumed, i.e. the added parameters are cleared.
This means that the ownership of the parameters
is transferred from the caller to the callee, which
is responsible for delete'ing reserved memory.
This is not relevant for the overloaded invoke()
methods with templated parameter types. The
ParameterList object can be reused for the
next invocation of another functional interface.
For convenience Timer.start, which requires an
unsigned int specifying the delay in milliseconds
(see Lst. 4) is again called with an overloaded
invoke().

Listing 4: Implementation of the PAWiS module
�Timer� from timer.cpp.

#include "timer.h"

/* ... */

void Timer::onStartup() {
// register the functional interface
registerFunctionalInterface("start",
CAST_TASK(Timer::startTimer), false);

}

void Timer::onInit() {
// setup interrupt source
m_oTimerSource.setName("timer");
// register our interrupt source
registerIntSource(m_oTimerSource);
// Create power source adapter and reporter
m_pPowerAdapter.reset(new PowerSourceAdapter(

*getContext().findPowerSource("ldo"),
LdoPowerSource::src3V3, 0, true));

m_pPowerAdapter->setReporter(
new LinearReporter(*this));

// Initial consumption
m_pPowerAdapter->
getReporter<LinearReporter>()->
set(0.0f, /* infinite */);

}

void Timer::countTimer(TaskControl &pa_oControl) {
// start the timer

9

m_pPowerAdapter->getReporter<LinearReporter>().
set(2.2e-3, 1.5e6);

// show that we are running
setFillColor("#FF0000");
// wait for the delay
pa_oControl.wait(m_tDelay);
// timer has run off
m_pPowerAdapter->getReporter<LinearReporter>().

set(1.2e-3, 1.5e6);
// show that the timer ran off
setFillColor("#00FF00");
// issue an interrupt request
pa_oControl.intRequest(m_oTimerSource);

}

void Timer::startTimer(TaskControl &pa_oControl) {
// get the delay parameter and calc the seconds
m_tDelay = pa_oControl.inParams()->
get<unsigned int>(0) / 1000.0f;

// start parallel task doing the delay
startTask(CAST_TASK(Timer::countTimer), 0, 0);

}

The implementation of a functional interface
is shown in Lst. 4. The (previously regis-
tered) method Timer::startTimer() is executed
upon the invocation of the functional interface
Timer.set. This extracts the �rst parameter (0)
from the parameter list held by the TaskControl&
object and stores it to a member variable. It is
important that the type (supplied as a template
parameter) must exactly match to the one sup-
plied to the according invoke().
Secondly a new task is created with

startTask(). It will run in parallel (and
therefore independently) to the functional in-
terface task which allows the method to return
immediately.

6.4 Timing

6.4.1 Hardware tasks

As stated in Sec. 5.3.5 hardware tasks
model time delays with the methods
wait(delay), waitUntil(predicate function)
and waitOrUntil(delay,predicate function).
The �rst function delays execution for a constant
amount of time, the second function delays
execution until a certain condition (tested by
the predicate function) is ful�lled. The third
form returns after a constant delay or until the
condition is true, whichever happens �rst. In the
task method Timer::countTimer() in Lst. 4 the
timer delay is realized with the wait() method.
The parameter of wait(Or)Until() (and

requireCpu(Or)Until() is a so called predi-
cate function which tells the simulation kernel
whether the (modeled) job has �nished or not
(see App::done()). This is evaluated as long as
wait(Or)Until() is �active�. The function has

to return true to stop and false to continue
wait(Or)Until().
Usually the predicate function has to reside

within the same module where it is used. With a
derived class from TaskControl::Predicate (e.g.
the available TaskControl::ModulePredicate)
you can implement predicate function across
module boundaries.
Note that both, wait() and wait(Or)Until(),

are blocking functions which means that simula-
tion time elapses whenever they are used. There-
fore they are yield points within the task method.

6.4.2 Software tasks

In software tasks a delay is modeled di�erently as
already described in Sec. 5.3.5.

6.4.3 Trigger

As stated in Sec. 5.3.3 one task can wait for a
trigger condition satis�ed by another task. This
is modeled by two separate tasks. The �rst task is
started from onInit() and uses a waitUntil() to
wait for the trigger. The second task implements
a functional interface and sets a class member
variable which is queried by the predicate func-
tion used with the waitUntil().

6.5 CPU

As described in Sec. 5.3.4 the CPU usage is
simulated with the requireCpu(percentage inte-
ger, percentage �oat, percentage memory ac-
cess, percentage �ow control, duration) method
from the TaskControl& object. In the method
App::onTimer() in Lst. 3 this call is used twice.
At �rst the software e�ort to set the LED's state
is modeled, and the second call models the setup
of the timer.
requireCpu() is useful for tasks where the to-

tal execution time is principally determinable be-
fore its start. For CPU tasks which run until
a certain external condition set their end, the
requireCpuUntil(percentage integer, percentage
�oat, percentage memory access, percentage �ow
control, predicate function) method is used, sim-
ilar to the waitUntil() function.
As already mentioned there is also

a combined delay and condition func-
tion requireCpuOrUntil() (see Lst. 3,
App::myMain()). The example shows how
to model a task which is waiting for an external
condition (e.g. a counter value is reached, the
PHY has �nished transmission, ...). To avoid
in�nite hangs a certain timeout is used as second
exit condition. Lst. 5 shows how such �rmware
code could look like. P1IN is a digital 8-bit input
port where the bit nr. 5 will go high when the

10

external peripheral has �nished its job. The
variable timeout is used to count upwards and is
compared with the constant TIMEOUT_50ms. Its
value is precalculated so that the loop lasts for
50ms when executed TIMEOUT_50ms times.

Listing 5: Sample code showing a waiting loop
with external condition and timeout.

timeout = 0;
while (((P1IN & 0x20) == 0) &&

(timeout < TIMEOUT_50ms)) {
timeout++;

}

Note that the requireCpu() functions are
blocking, which means that simulation time
elapses during their execution. Therefore they
are yield point of a task.
The numbers given to requireCpu() are used

by the CPU implementation to determine the real
execution time and power consumption. The �rst
four numbers re�ect the proportions of di�erent
processing types. You have to estimate them de-
pending on your real code. Ensure that they sum
up to 1.0.
The �fth parameter gives the total execution

time referred to the norm CPU. To determine
this you have several options. The most accu-
rate is surely using a CPU simulation tool and
measure the time for a certain task programmed
as �rmware code. Alternatively you can use real
hardware and measure the processing time with
an oscilloscope.2

Since the contribution of the CPU to power
consumption and timing is rather small, these val-
ues don't have to be very accurate. Therefore you
can also estimate the durations yourself.

6.5.1 Callbacks

A callback is a method which is called after a
certain amount of time. It is scheduled with
scheduleCallback(method,delay) and can be
canceled with cancelCallback(). For further
details consult the Doxygen documentation of
PawisBase.

6.5.2 CPU Module Implementation

The CPU implementation is a class derived from
the PAWiS base class Cpu. You have to implement
certain virtual methods to customize the simu-
lation model. For a very simple CPU you only
have to implement onInit(), calcCpuTime() and
getIntVectorPriority().

2Set a digital output of your micro controller high di-

rectly before your routine and back to low directly after-

wards. Attach the oscilloscope to this output pin and use

its measurement tools to get the duration of this �pulse�.

The method calcCpuTime() has to calculate
the real execution time of a processing request
depending on the desired CPU characteristics. In
our example (see Lst. 6) we implement a CPU
with the same performance as the norm CPU and
therefore simply use the norm-CPU referred exe-
cution time. Please consider the Doxygen docu-
mentation of FuncCpuMessage on how to retrieve
the percentage values of the individual processing
domains.

Since the CPU can handle interrupts, the prior-
itizing of concurrent interrupts requires classi�ca-
tion of the individual interrupt vectors. You have
to implement this in getIntVectorPriority().
Again, we stay simple and prioritize the vectors
according to their numerical value.

The initialization of the module in onInit()
has to assign an interrupt mapping as described
in Sec. 6.7. This can also be done from another
module by retrieving a pointer to the CPU in-
stance. Here we also setup a power reporter, fully
analogous to Sec. 6.6.1.

A special feature of our simple CPU is
the sleep state. The user of the CPU uses
TaskControl::setCpuState(TaskControl::Cpu-
State) to set a new state (see Lst. 3). Note that
the parameter is a class to allow unlimited fea-
tures. We derive from this class and provide two
di�erent modes pmActive and pmSleep. Every
time the user uses setCpuState() the method
onStateChange() (see Lst. 6) is executed. De-
pending on the supplied mode the according
power consumption is reported. Finally the CPU
execution is either pause()d or resume()d.

To reactivate the CPU in case of an inter-
rupt the method onIsrEnter() uses the inter-
nal method Cpu::setCpuState(). This imple-
mentation results in the behavior that the CPU
is woken by an interrupt and then stays ac-
tive, even if the ISR has �nished. Therefore
in App::myMain() the power mode is set again
in an in�nite loop (see Lst. 3). The method
also shows an important fact: You have to
use requireCpu() after deactivating the CPU
to simulate the stopped execution. That means
that simply calling setCpuState() only internally
stores that the CPU is deactivated. To experience
this fact a processing request has to be performed
which will not start until the CPU is reactivated
again.

You could also override the method
onIsrLeave() and set the power mode to
pmSleep again. Note that in this case the main
program could not wake up again, because
every interrupt deactivates the CPU after it has
�nished. To solve this problem the ISR can
decide whether the CPU should stay active after
its end or shut-down again.

11

To implement this you have to utilize the
full power of using a class CpuState for
setCpuState(). With this you can communi-
cate the desired behavior to the Cpu module.
In Lst. 6 an immediate reaction of the ordered
power mode is accomplished in onStateChange()
whereas in the above case the desired behavior of
a future event has to be stored and then handled
in onIsrLeave(). The current power mode as
well as the power mode after returning from the
ISR have to be stored in a state stack which is ma-
nipulated using a special CpuState class. An ex-
ample of this topic is the CpuSimple of the Module
Library.

Listing 6: Declaration and implementation of the
Cpu module from cpu.h.

/* ... */
#include <base/paCpu.h>
/* ... */

class SimpleCpu : public Cpu {
public:

class CpuState
: public TaskControl::CpuState {
public:

typedef enum {
pmActive,
pmSleep

} t_PowerMode;
private:
t_PowerMode m_PowerMode;

public:
CpuState(t_PowerMode pa_PowerMode) {
m_PowerMode = pa_PowerMode;

}
t_PowerMode getPowerMode() const {
return m_PowerMode;

}
};

private:
std::auto_ptr<PowerSourceAdapter>

m_pPowerAdapter;
InterruptMapping m_oIntMapping;

protected:
virtual t_Time calcCpuTime(
const FuncCpuMessage &pa_msgCpu)

{
return pa_msgCpu.getDuration();

}

virtual int getIntVectorPriority(
TaskControl::t_IntVector pa_intVector)
const

{
return pa_intVector;

}

virtual void onStateChange(/* ... */) {
const CpuState* stateNew =
dynamic_cast<const CpuState*>
(pa_stateNew);

if (stateNew->getPowerMode() ==
CpuState::pmActive) {

// CPU is active
m_pPowerAdapter->
getReporter<LinearReporter>()->
set(3.2e-3, 1.5e3);

resume();
} else {
// CPU in sleep state
m_pPowerAdapter->
getReporter<LinearReporter>()->
set(5e-5, 1e6);

pause();
}

}

void onIsrEnter() {
setCpuState(new CpuState(CpuState::pmActive));

}

virtual void onInit() {
// setup power reporter
m_pPowerAdapter.reset(
new PowerSourceAdapter(

*getContext().findPowerSource("ldo"),
LdoPowerSource::src3V3, 0, true));

m_pPowerAdapter->setReporter(
new LinearReporter(*this));

// setup interrupt mapping
m_oIntMapping.setMapping("timer", 17);
setInterruptMapping(&m_oIntMapping);
// set initial state
setCpuState(
new CpuState(CpuState::pmActive));

}

public:
Module_Class_Members(SimpleCpu, Cpu, 0)

};
/* ... */

6.6 Power Simulation

6.6.1 Power Consumption

Only hardware tasks draw power on their own.
The power consumption of software tasks is mod-
eled by the CPU module which is activated with
the requireCpu() calls.

Permanent hardware tasks have to reg-
ister at their power supply with a call
to TaskControl::subscribePowerSource(source
name, source number). The source name is a
string which selects the supply module. Every
source can implement several outputs (e.g. an
LDO with two di�erent output voltages sourc-
ing from one input). The second parameter is
an integer specifying the supply module's output
number.

Afterwards the consumption reporter is
set and con�gured. The template method

12

TaskControl::getReporter<type>() returns
a reference to the internally stored reporter
object where type is the reporter class type (see
Sec. 5.3.9). If you use di�erent types within one
task after another the previous reporter object is
deleted and a new one is created. The reference
is used to execute the reporter's set(...) method
which accepts the parameters according to the
reporter's properties.
Reporting the consumption means that you

specify �from now on I'm consuming n mA cur-
rent�. This is just the start of a periode. Its end
is determined only by another set() invocation
in the same task.
Note that with the destruction of the

TaskControl object (which happens when your
task has �nished), the PowerReporter object is
also destroyed. That means that the power con-
sumption of that task also stops. Therefore the
described method is only applicable for tasks
which are started once and will run forever.
On the other hand you might as well imple-

ment tasks which only run for a certain while,
e.g., to start some timer (see Lst. 4) or to
switch a device on or o� (see Lst. 7). Such
tasks are usually invoked externally. In that
case the task exits while the current consumption
should continue. To implement this behavior you
have to instantiate your own PowerReporter and
PowerSourceAdapter objects.
Lets have a look at Lst. 7. The LED current

consumption is updated in the set() functional
interface. If it is switched on, the forward voltage
Uf is set to 2.2V and the series resistor to 280Ω.
To switch o� the LED its series resistor is set to
∞. This is a trick because we don't want to sim-
ulate a switch. Note that the method set() im-
mediately exits and assumes that the power con-
sumption continues.
Therefore in the method onInit() a

PowerSourceAdapter object is created. This
is necessary to connect a PowerReporter to
a PowerSource. This PowerReporter is then
assigned to the PowerSourceAdapter using
setReporter(). A fully analogous case can be
found in Lst. 4 where the method countTimer()
implements a waiting timer task. It is started by
startTimer() and sets the power consumption
of the running timer. Then it uses wait() to
implement the timer delay and �nally reports the
power consumption of the inactive timer, issues
an interrupt request end exits. This inactive
power consumption has to continue until it is
next invoked.

Listing 7: Class implementation of the PAWiS
module �Led� from led.cpp.

/* ... */

void Led::onStartup() {
registerFunctionalInterface("set",
CAST_TASK(Led::set), false);

}

void Led::onInit() {
// Create power source adapter and reporter
m_pPowerAdapter.reset(
new PowerSourceAdapter(

*getContext().findPowerSource("ldo"),
LdoPowerSource::src5V, 0, true));

m_pPowerAdapter->setReporter(
new LedReporter(*this));

// Initial consumption
m_pPowerAdapter->
getReporter<LedReporter>()->
set(0.0f, /* infinity */);

}

void Led::set(TaskControl &pa_oControl) {
m_bState = pa_oControl.inParams()->
get<bool>(0);

if (m_bState) {
m_pPowerAdapter->
getReporter<LedReporter>()->
set(2.2f, 280.0f);

setFillColor("#40ff40");
} else {
m_pPowerAdapter->
getReporter<LedReporter>()->
set(0.0f, /* infinity */);

setFillColor("#206020");
}

}

6.6.2 Power Sources

In your simulation most power sources will be
converters (LDO, DC/DC), i.e. no real sources.
But you will have at least one real power
source (like a battery or a solar cell). To
build such power sources a class derived from
PowerSource or PendingPowerSource is imple-
mented (see Lst. 8). These base classes are used
for real sources (e.g. batteries) and for sources
which are themselves consumers (e.g. LDOs or
buck converters), respectively.
In our example the LdoPowerSource imple-

ments two sources (NumSources) with 5V (src5V)
and 3.3V (src3V3). These constants are used by
the consumers (see Lst. 4) and in calcVoltage()
and calcCurrent() (see Lst. 9).
The LdoPowerSource is itself a consumer and

therefore requires its own power source (see its
constructor). BatterySource is the origin of en-
ergy and thus doesn't have another source.
The power source classes are instantiated in the

normal PawisModule Supply (see also Lst. 9).

Listing 8: Declaration of the power source module
�Ldo� from ldo.h.

13

/* ... */
#include <base/paPowerSource.h>
#include <base/paLinearReporter.h>
#include <base/paPendingPowerSource.h>
#include <base/paLimitCycleBehaviour.h>
/* ... */

class LdoPowerSource : public PendingPowerSource {
public:

static const unsigned int NumSources = 2;
static const unsigned int src5V = 0;
static const unsigned int src3V3 = 1;

private:
float m_fSourceImpedance5V;
float m_fSourceImpedance3V3;

protected:
virtual t_Voltage calcVoltage(/* ... */);
virtual t_Current calcCurrent(/* ... */);

public:
LdoPowerSource(

PawisModule& pa_oModule,
PowerSource* pa_pPowerSource,
unsigned int pa_iPowerSourceNum);

};

class BatterySource : public PowerSource {
protected:

LinearReporter m_oReporter;
virtual t_Voltage calcVoltage(/* ... */);

public:
BatterySource(PawisModule& pa_oModule);

};

class Supply : public PawisModule {
private:

BatterySource* m_pBatterySource;
LdoPowerSource* m_pLdoSource;
void onStartup();

public:
Module_Class_Members(Supply, PawisModule, 0)

};

/* ... */

Every supply class has to implement the
method calcVoltage() which is called when-
ever an output current changes. In this exam-
ple we implement two simple sources with con-
stant output resistance m_fSourceImpedance5V
and m_fSourceImpedance3V3 (see Lst. 9). Since
the LdoPowerSource itself is a consumer too, the
method calcCurrent() also has to be imple-
mented. This must return the total current con-
sumption. Its parameter OutputSource carries
the information which output has changed so that
the input current must be recalculated. In the ex-
ample we have stored the individual output cur-
rents in member variables and simply return the
sum of them plus a constant quiescent current.

The BatterySource is implemented as a never

ending 12V source. The reporting of the energy
origin is done with m_oReporter). Note that the
reporter is instantiated without a source, there-
fore we have to set the input voltage by hand with
setVoltage().
In LdoPowerSource's constructor we have to as-

sign an update behavior to our source. As de-
scribed in Sec. 5.3.9 the output voltage of a source
can change on the current load. The current load
itself also depends on the output voltage, there-
fore iterative calculation of the true values is per-
formed. The update behavior class determines
how this updates are performed. Here we use a
class which limits the count of iterative cycles to
2.

Listing 9: Implementation of the power source
module �Ldo� from ldo.cpp.

/* ... */

/**** Ldo Module *****************************/

Define_Module(Supply);

void Supply::onStartup() {
// create and register the battery source
m_pBatterySource = new BatterySource(*this);
m_oThisContext.registerPowerSource("battery",

*m_pBatterySource);
// create and register the LDO source
m_pLdoSource = new LdoPowerSource(*this,
m_pBatterySource, 0);

m_oThisContext.registerPowerSource("ldo",

*m_pLdoSource);
}

/**** LdoPowerSource *************************/

t_Voltage LdoPowerSource::calcVoltage(
unsigned int pa_nSource,
t_Current pa_fCurrentSum)

{
t_Voltage ret;
switch(pa_nSource) {
case src5V:

ret = 5.0f -
pa_fCurrentSum * m_fSourceImpedance5V;

break;
case src3V3:
ret = 3.3f -
pa_fCurrentSum * m_fSourceImpedance3V3;

break;
default:
// error

}
return ret;

}

t_Current LdoPowerSource::calcCurrent(
unsigned int pa_nOutputSource)

{
return (calcCurrentSum(src5V) +

14

calcCurrentSum(src3V3) +
m_fSourceCurrent3V3 + 10e-6);

}

LdoPowerSource::LdoPowerSource(
PawisModule& pa_oModule,
PowerSource* pa_pPowerSource,
unsigned int pa_iPowerSourceNum) :
PendingPowerSource(pa_oModule, NumSources)

{
// Source for our own power consumption.
setPowerSource(*pa_pPowerSource,

pa_iPowerSourceNum);
// setup internal variables
m_fSourceImpedance5V = 1.0f;
m_fSourceImpedance3V3 = 1.5f;
// update behavior
assignBehaviour(new LimitCycleBehaviour(2));

}

/**** BatterySource **************************/

BatterySource::BatterySource(
PawisModule& pa_oModule) :
m_oReporter(pa_oModule)

{
assignBehaviour(new LimitCycleBehaviour(2));
m_oReporter.setVoltage(12.0);

}

t_Voltage BatterySource::calcVoltage(
unsigned int pa_nSource,
t_Current pa_fCurrentSum)

{
m_oReporter.set(pa_fCurrentSum, 1e6);
// luckily we have an infinitely full battery
return m_oReporter.getInputVoltage();

}

6.6.3 Power Reporter

As already denoted in Sec. 5.3.9 there are
several prede�ned power reporter classes, e.g.
ConstantReporter. For special consumption be-
havior (i.e. non-linear current characteristics)
you have to de�ne your own reporter class.
The Led module shows the usage of the custom
LedReporter to implement the characteristic of a
LED with a series resistor in a simpli�ed way (see
Lst. 10).
The reporter is derived from the class

PowerReporter and has to implement the meth-
ods calcCurrent() and set(). The pa-
rameters of set() can be de�ned freely as
your simulated consumer requires. Here
we consider a (constant) forward voltage of
the LED (pa_fVoltage) and a series resistor
(pa_fResistorValue). In calcCurrent() the
current consumption at a given input voltage (re-
trieved with getInputVoltage()) is calculated.
In our case we have to ensure that the current is

non-negative.

Listing 10: Declaration and implementation of
the custom power reporter �LedReporter� from
ledReporter.cpp.

/* ... */

#include <base/paPowerReporter.h>

class LedReporter : public PowerReporter {
private:
t_Voltage m_fVoltage;
float m_fResistor;

public:
LedReporter(PawisBase &pa_oBase) :
PowerReporter(pa_oBase),
m_fVoltage(0.0f),
m_fResistor(/* infinity */)

{}

virtual t_Current calcCurrent() {
if (getInputVoltage() > m_fVoltage) {
// valid condition: calc current
return
(getInputVoltage() - m_fVoltage)
/ m_fResistor;

} else {
// otherwise - no current
return 0.0f;

}
}

void set(t_Voltage pa_fVoltage,
float pa_fResistor) {

m_fVoltage = pa_fVoltage;
m_fResistor = pa_fResistor;
currentChanged();

}
};

6.6.4 Power Logging

Whenever the power consumption of a task
changes (i.e., the set() method of a power re-
porter is invoked), it is logged to an external log
�le together with the time and module and task
information. Additionally the requesting module
is stored, e.g. when the CPU consumes power on
behalf of the routing network layer.

To mark certain points in your processing the
reportEvent(string) method can be used. The
string is simply stored with a time stamp and
module information in the log �le.

The logged data is processed and visualized
with the DataProcessing tool (see Fig. 7). The
graph area shows the power consumption se-
quence over time. The module hierarchy is shown
in the bottom left of the windows. Click with
the right button at a modules name to change its
color. When you move the mouse in the graph

15

window, an overlay �eld displays the current val-
ues of all modules at the marked time.
To zoom horizontally or vertically use the

shifters at the bottom right of the graph window.
Click and hold the right mouse button to pan the
image. You can also use the scroll bars for that.
The button [Reload] is used to reload the log �le
(e.g. after another simulation run). Use [Fit Key]
to �t the graph horizontally (i.e. time axis) and
[FitValue] to �t it vertically (i.e., power axis).

Figure 7: Screenshot of the DataProcessing tool.

6.7 Interrupts

To model interrupts with the PAWiS Frame-
work the interrupt source has to register with
registerIntSource(intSource&). The parame-
ter is a reference to a TaskControl::IntSource
object. Use its setName() method before you reg-
ister the source to name the interrupt source as
later used by the CPU interrupt mapping. Note
that this must be called within your onInit()
method (see Lst. 4).
To issue an interrupt request, the method

TaskControl::intRequest(intSource&) is used
(see countTimer() in Lst. 4). This method is
non-blocking, i.e. it immediately returns and the
interrupt request is handled by the next coroutine
yield point.
To process an interrupt request, an interrupt

service routine (ISR) must be registered with
registerIsr(isrTask, intVector, name) (see
onInit() in Lst. 3). A separate task context is
created for this ISR method (see App::onTimer()
in Lst. 3) whenever it is executed. The ISR has
�nished when you return from the method.
It is important to note that the PAWiS Frame-

work separates between interrupt sources and in-
terrupt vectors. Several interrupt sources can be
mapped to a single vector (e.g. several timer
events share one interrupt vector). An inter-
rupt source has a unique name within a node

set with the IntSouce::setName() method. In-
terrupt vectors are represented by a number
(TaskControl::t_IntVector = int). For every
interrupt vector a single interrupt service routine
can be registered.
The mapping from interrupt sources to inter-

rupt vectors is accomplished by the CPU (see
Lst. 6). With setInterruptMapping(mapping)
a pointer to an InterruptMapping object is
supplied. This object will be used by the
Cpu class to determine the vector number in
registerIntSource().
To setup the mapping use

InterruptMapping::setMapping(source name,
vector) for every mapping from source to vector
(see onInit() in Lst. 6).

6.8 Scripting

6.8.1 Usage

The PAWiS framework intrinsically supports
scripting with the embedded scripting engine
Lua. PAWiS Lua scripts can be used at various
occurrences in the execution of a simulation run.
A very important aspect is the usage of scripts
at network initialization time (i.e., these scripts
can be used to setup the network; see Sec. 6.9 for
details). Listing 11 shows how a script can be
speci�ed in order for being executed at network
initialization. The Config module can process
a parameter named InitScript which holds the
location of a Lua script �le to be executed at sim-
ulation startup. This takes place before the �rst
module that is derived from PawisModule is being
initialized.

Listing 11: NED File to reference a Lua init
script.

// ...

simple Config
parameters:
InitScript : string;

endsimple

module MyNetwork
submodules:
myConfig : Config
parameters:
InitScript = "config.lua";

end

The supplied script will be executed imme-
diately. In case a script contains a function
named init this function will be executed right
after the script �nishes execution. The script in
Lst. 12 shows the usage and consequence of an
init-function. When the script is initialized the
variable MyVar is �rst created and a the value 17

16

is assigned. Right after that the variable is in-
creased by one. After the script execution the
function init is called where MyVar is set to 200
via the local variable MyLocalVar (note that all
variables in Lua are global except if they are de-
�ned as local).

Listing 12: Lua init script.

function otherFunc()
-- use local temp variable
local MyLocalVar = 200;
return MyLocalVar;

end

function init()
MyVar = otherFunc();

end

-- MyVar has global scope (within the script)
MyVar = 17;
MyVar = MyVar + 1;

A second way to bind Lua scripts to frame-
work objects is that every module derived from
PawisModule also supports the InitScript pa-
rameter. Though the behavior di�ers a little from
the Con�g module's usage. When an init script
is assigned to a node module the script is exe-
cuted for every instance of the module type and
the context of the script (the Lua stack) exists as
long as the instance exists. This is comparable to
multiple threads where each thread has its own
stack for execution. An important consequence
is that calls within such scripts are only related
to one instance of a module and only modify the
local environment (the Lua stack). Scripts that
are bound to an instance of a module are said to
have module context. For such scripts the frame-
work o�ers additional module related functional-
ity (see the Doxygen documentation of the class
LuaFunctionalState).

6.8.2 Functionality

Several PAWiS functions are also available in Lua
script code. Scripts provide easy access to func-
tionality for moving, grouping, creating sensor
nodes, etc. They can also access and provide
PAWiS functional interfaces. The following sec-
tion introduces some of the most important pos-
sibilities of Lua scripts.

Node Grouping and Movement. The script
in Lst. 13 gives a short example on how to group
nodes and translate the entire group. For this
purpose a node group needs to be created that
allows nodes to be added. Whenever the node
group is moved all its members are moved relative
to the origin of the node group.

Listing 13: Lua node grouping and movement
script.

function createNodes()
-- create a group with origin (0/0)
nodeGroup = pawis.createNodeGroup(0, 0);
-- create 10 nodes and add to group
for i = 1, 10 do
pawis.addToNodeGroup(
nodeGroup,
pawis.createDefaultNode(
i, "Node"..i, i * 10, 0

);
);

end
end

function moveNodes(xOffset, yOffset)
pawis.moveGroup(nodeGroup, xOffset, yOffset);

end

The script in Lst. 14 assumes to have mod-
ule context and shows how to periodically up-
date its housing node's position. An init script
for a module within a node can be set up
with the InitScript parameter of the Config
module or in a Lua script itself with the
pawis.bindLuaInitScript function. The exam-
ple init function schedules a callback to Lua af-
ter one second. When the callback is executed the
node is moved (with one millimeter per second to
the right) and another callback is scheduled again
for one second.

Listing 14: Lua position update script.

function updatePosition()
local timeDelta = pawis.SimTime - lastUpdate;
-- use the module context to get the node module
pawis.moveNode(module.Node, 1e-3 * timeDelta, 0);
lastUpdate = pawis.SimTime;
-- re-schedule a callback in 1 second
pawis.scheduleLuaCallback(1.0, updatePosition);

end

function init()
-- schedule a callback in 1 second
pawis.scheduleLuaCallback(1.0, updatePosition);
lastUpdate = pawis.SimTime;

end

For a detailed description of Lua to PAWiS
framework bindings consult the Doxygen doc-
umentation of the classes LuaPawisState and
LuaFunctionalState. The �rst class covers com-
mon functions that are always available where the
latter covers functions that are only available in
scripts with module context.

Handling Functional Interfaces. Lua glue
code also supports calling functional interfaces
from scripts. The PAWiS framework dispatches
such calls and invokes either C++ based code

17

or other Lua script code. However, parame-
ters of functional interfaces need to have strict
types and order. As Lua does not have a notion
of strict types (it utilizes dynamic typing) func-
tional interface prototypes have to be speci�ed
before they can be invoked. In order to intro-
duce the notion of types the PAWiS framework
provides various pseudo types for Lua that can
be used to declare functional interface prototypes
(i.e., pawis.int, pawis.uint, pawis.double,
pawis.float, pawis.bool, pawis.message, ...).
It is necessary that the types and order of the
parameters exactly match the functional inter-
face speci�cation. In addition to calling interfaces
from scripts the framework also supports the in-
vocation of functional interfaces from the oppo-
site side, i.e., calls from C++ to Lua script code.
The script in Lst. 15 shows both scenar-

ios: on one hand it calls a functional inter-
face and on the other hand it provides a func-
tion that serves as a functional interface. In
the function init it declares a functional in-
terface prototype inc for the module Adder by
calling module.declareInterface with two in-
teger input parameters and one integer output
parameter. After this call the script can in-
voke this functional interface with the speci-
�ed parameters using control.invoke as shown
in the function increment. With the call to
the module.bindInterface function the module's
(i.e., the module that is bound to the script) func-
tional interface named increment is bound to the
Lua function increment with the same parame-
ters as before. Again, this function gets the spec-
i�ed parameters in the speci�ed order. When this
function is invoked it in turn also invokes another
functional interface, i.e., the interface inc of the
module Adder (as declared before) and passes the
result back to the caller.

Listing 15: Lua script providing and calling a
functional interface.

function increment(value, increment)
return control.invoke(
"Adder", "inc", value, increment

);
end

function init()
-- declare a functional interface prototype
module.declareInterface(

"Adder",
"inc",
{pawis.int, pawis.int},
{pawis.int}

);

-- bind Lua function to functional interface
module.bindInterface(

"increment",

increment,
{pawis.int, pawis.int},
{pawis.int}

);
end

6.9 Environment

The Environment holds all nodes, obstacles and
global properties in a PAWiS simulation. It can
be seen as the container (or the current state) for
everything that is to be simulated. Most impor-
tantly it holds all the sensor nodes on 3D posi-
tions and properties for wireless communication
among them.

6.9.1 Environment De�nition

Node placement. The PAWiS framework of-
fers multiple possibilities to instantiate and con-
�gure a simulation network. The OMNeT way
to instantiate nodes is to use the NED �le (see
Sec. 6.1.1). The example NED �le in Lst. 16
shows how to instantiate two nodes. First of all
the modules (simple and compound) need to be
de�ned. The module that represents a sensor
node is a compound module consisting of vari-
ous submodules that are representing layers or
aspects of your system. Then the submodules of
the network (these are the actual nodes, i.e., in-
stances of the node module types) are speci�ed.
In this example the variables holding the nodes
are called node1 and node2 both of the type MyN-
ode. In order for a node module to be PAWiS con-
form it needs to specify the parameters NodeId,
PosX, PosY (PosZ is optional and set to zero if
omitted).

Listing 16: NED �le example for instantiating
two nodes.

simple Config
parameters:
InitScript : string,
AttenuationExponent : numeric,
BackgroundNoise : numeric,
AntennaArea : numeric,
MinReceivingPower : numeric,
NodeClass : string;

endsimple

module MyNode
// ...

endmodule

// ...

module MyNetwork
submodules:
myConfig : Config
parameters:

18

InitScript = "config.lua",
AttenuationExponent = 2.0,
BackgroundNoise = 0.0,
AntennaArea = 0.001,
MinReceivingPower = 1e-15,
NodeClass = "MyNode";

node1 : MyNode
parameters:

NodeId = 1,
PosX = 100.0,
PosY = 100.0,
PosZ = 0.0;

node2 : MyNode
parameters:

NodeId = 2,
PosX = 100.0,
PosY = 200.0,
PosZ = 0.0;

// ...
endmodule

network myNetworkInstance : MyNetwork
endnetwork

The NED �le also shows the usage of the Con�g
module. This module can be utilized to set up
environment properties such as:

AntennaArea: Parameter is used by the Air to
calculate the received signal power (see (2)).
It is used for every AirClient module within
the Environment.

AttenuationExponent: Parameter gives the at-
tenuation exponent b in (1) and (2).

BackgroundNoise: Minimal noise that is always
e�ective when sending via the Air.

InitScript: Path to a script �le that is executed
when the network is initialized.

MinReceivingPower: Threshold for accepting a
signal as message (every signal with power
below this threshold is treated as noise).

NodeClass: Default class (module type) for in-
stantiating node modules.

PositionFactor: Parameter is used for scaling
world positions (in meters) to screen pixels.

An alternative and very �exible way to specify
a network is to use a Lua script. In order to utilize
this feature a network initialization script hook
(as described in Sec. 6.8) needs to be installed.
Listing 17 shows an example init function of such
a script. This script creates 100 nodes and places
them on a 10 by 10 meters grid. At the beginning
of the function some environment properties nec-
essary for wireless communication are con�gured
(note that these parameters can also be changed

during the simulation runtime to simulate chang-
ing communication conditions). Scripting sup-
ports the same properties as the Con�g module
from the NED �le.

Listing 17: Lua script example for setting up a
network.

function init()
pawis.AttenuationExponent = 2.0;
pawis.BackgroundNoise = 0.0;
pawis.AntennaArea = 0.001;
pawis.MinReceivingPower = 1e-15;
pawis.NodeClass = "MyNode";
local id = 1;
for y = 1, 10 do
for x = 1, 10 do
local aNode =
pawis.createDefaultNode(
"Node"..id,
id,
x, y

);
id = id + 1;

end
end

end

Using scripts to set up networks allows for
complex spatial distributions of nodes (note that
topology can not be setup; it is a mere result of
signal power between senders and receivers).

Attenuation. The attenuation between the
sensor nodes is mainly calculated by their dis-
tance. Currently no obstacles are considered (see
Sec. 5.3.8). In order to adjust the attenuation
between two nodes the PAWiS framework o�ers
the possibility to manually specify a multiplica-
tive factor for attenuation between pairs of nodes.
Whenever such an individual attenuation is set
up the attenuation that results from the distance
between two nodes is multiplied with this fac-
tor. The Lua script in Lst. 18 creates 10 ad-
jacent nodes in a function called setupNodes.
Right after creating the nodes the attenuation
between nodes 1 and 2 and the attenuation be-
tween nodes 2 and 3 is adjusted with the call
to pawis.setAttenuation. The function takes a
pair of node IDs and an attenuation factor that
is a multiplicative factor (i.e., values above 1 add
attenuation while values below 1 reduce attenua-
tion) for power.

Listing 18: Lua script example for specifying cus-
tom attenuation between nodes.

function setupNodes()
local id = 1;
for x = 1, 10 do
local aNode =
pawis.createDefaultNode(
"Node"..id,

19

id, x, 0
);

id = id + 1;
end
pawis.setAttenuation(
{
{1, 2, 2.0},
{2, 3, 2.0}

}
);

end

6.10 Air

The module of your node which connects to
the Air must be derived from AirClient-
Module.3 The transmitter uses the method
sendToAir(message, bit count, transmit power,
transmission ID) to transfer the data to the Air.
The parameter message is the message as an ob-
ject which is derived from BaseMessage. The
number of bits in the packet is speci�ed by bit
count, which will be used for calculating the dura-
tion. The transmit power is given in Watts. The
meaning of transmission ID is described below.
When the packet transmission is complete, the
callback method void onAirDataTransmitted()
is executed.
On the receiving side at the start of a transmis-

sion the callback method bool acceptAirData-
Start(signal power, &preview bits, transmission
ID) is called. This should return true if the
packet will be accepted (i.e. the receiver is listen-
ing). During the reception of the packet no new
packets can be received, therefore false must be
returned. Obviously when the radio is not in lis-
ten state false should be returned too. The sig-
nal power at the receiver is given in Watts.
When the packet reception is �nished, the call-

back method onAirDataArrived(message, bit
count, bit errors) is executed. It should imple-
ment the actual data packet handling. message
and bit count are the message object and the
value supplied to sendToAir(). The number of
bit errors which were introduced to the packet
during transmission are given in bit errors. Note
that message is unaltered (i.e. without errors).
Only the number of bit errors is given and you
don't know which bits of the message were dis-
turbed.
Since the method onAirDataArrived() is only

executed after the full packet was received, no
noti�cation is provided while the transmission
is in progress. For some addressing schemes or
special receivers this might be necessary, there-
fore the (output) parameter &preview bits of

3This is derived from PawisModule so your module is all

like a normal module.

acceptAirDataStart() should be set to the num-
ber of bits, after which you want to be noti�ed.
The virtual callback method onPreviewPacket()
will be executed. Set it to 0 if you don't want an
additional noti�cation.

If during the transmission another node starts
to send, its signal is uncorrelated to the �rst
sender. This can be modeled as noise and there-
fore decrease in SNR (from the receivers point
of view). Such events can happen several times
during the transmission of a data packet and the
receiver has to deal with changing SNR through-
out the packet. The �nal count of bit errors thus
results from this train of di�erent SNR values and
is assembled of the portions of constant SNR.

The number of bit errors within a period of con-
stant SNR is calculated by the callback method
unsigned int calcBitErrors(SNR, bit count).
It should use the given SNR value and calculate
the BER and further the number of bit errors.

The simulation of a shared channel via multiple
access schemes like TDMA, FDMA and CDMA
is enabled in two di�erent ways. The case of
TDMA is trivial, because we already have a time
domain simulation. FDMA and CDMA, on the
other hand, occupy the medium concurrently and
are only separated by a frequency channel or
by coding groups. To implement this behavior
the transmission ID parameter of the methods
acceptAirDataStart() and sendToAir() is used.
This is an unsigned int with no internal mean-
ing. You de�ne which value represents which
channel (or whatever else you like), hence it is
just an ID.

When sending a packet with sendToAir() sim-
ply specify the appropriate ID (e.g. to state
the frequency channel or the coding group).
All other nodes get noti�ed by the method
acceptAirDataStart() which also supplies the
ID. In this function you de�ne how di�erent IDs
are handled. In Lst. 19 we only accept the packet
if it is sent with the same ID as our own (OwnTID).

If a node doesn't accept a packet the signal
is again regarded as noise. Usually an input �l-
ter of the receiver attenuates signals at neigh-
bor channels. This is modeled by the method
calcInterferingNoise(). This is the place
where you specify the input �lter characteris-
tics (side channel suppression, ... for FDMA) or
the coding gain (for CDMA). The return value
is a factor which is multiplied by the received
power, hence its return value should be ≤ 1.0.
If you don't care about the channel ID, simply
return 1.0 and don't handle the transmission ID
in acceptAirDataStart().

Listing 19 gives an example of a physical layer
implementation. The function calcBitErrors()
calculates the absolute amount of bit errors for a

20

given SNR pa_fSnr and bit count pa_nBitCount.
The bit error ratio (BER) is derived from the
SNR by the function calc_BER() which depends
on the modulation format. It is not shown
here. The number of bit errors is binomially
distributed and calculated with the OMNeT++
function binomial(n,p).
The function onAirDataStart() demonstrates

how the return value depends on the internal
state of the receiver. If the signal power is be-
low a certain sensitivity level the receiver cannot
synchronize to the RF signal and thus doesn't re-
ceive the signal. If the signal is sent on the wrong
channel the packet is also not accepted.

onAirDataArrived() is executed when the
packet reception is done. This will update the in-
ternal transceiver state and forward the message
to the upper layers.

The upper layers have to set the physical
layer into listen mode, which is done with the
Phy::listen() functional interface. It �rst
activates the receiver (by setting its state to
rsListen. Then it waits until a packet is received
or a timeout is reached. A status and the received
packet are then returned to the caller (i.e. the
MAC layer).

To send a packet the functional interface
Phy::send() is invoked from an upper layer. This
sets the transceiver state and uses sendToAir()
to start the actual transmission. As soon as it has
�nished the callback onAirDataTransmitted()
sets the transceiver state back to idle and informs
the upper layers of the completed transmission.
Note that this is stateless and the integrity is not
ensured. This has to be accomplished by upper
layers.

Listing 19: Implementation of the physical layer
�Phy� interfacing to the Air from phy.cpp.

/* ... */

/**** Interface to the Air ****/
unsigned int Phy::calcBitErrors(
double SNR,
unsigned int BitCount)

{
// ...
BER = calcBER(SNR);
Errors = binomial(BitCount, BER);
return BitErrorCount;

}

double Phy::calcInterferingNoise(
unsigned int TransmissionID)

{
return calcNeighChan(OwnTID, TransmissionID);

}

bool Phy::acceptAirDataStart(
double SignalPower,

int &PreviewBits,
unsigned int TransmissionID)

{
PreviewBit = 0;
switch (RadioState) {
case rsListen:

if ((SignalPower > MinPower) &&
(TransmissionId == OwnTID)) {

RadioState = rsReceive;
return true;

} else
return false;

case rsReceive:
default:
return false;

}
}

void Phy::onAirDataArrived(
BaseMessage *Data,
unsigned int BitCount,
unsigned int BitErrors)

{
// handle radio state
RadioState = rsFSON;
// inform MAC layer
// ...

}

void Phy::onAirDataTransmitted(void) {
// handle radio state
RadioState = rsFSON;
// inform MAC layer
// ...

}

/**** Functional Interfaces ****/
void Phy::listen(TaskControl &pa_oControl) {
// ...
RadioState = rsListen;
// ...

}

void Phy::send(TaskControl &pa_oControl) {
// ...
RadioState = rsSend;
sendToAir(txData.dup(), txData.getLength()*8,
m_dOutputPower, OwnTID);

// ...
}

/* ... */

6.11 Summary

6.11.1 Tasks

Overview of tasks

� Task

� FI: single invoke

� FI: multi invoke

21

� Call Back

� Predicate functions

6.11.2 Casts

The following casts are available

CAST_TASK() is used for
registerFunctionalInterface() and
startTask() to cast a task method.

CAST_CALLBACK() is used for
scheduleCallback().

CAST_PREDICATE() is used with
requireCpuUntil(), requireCpuOrUntil()
and waitUntil().

7 Important Notes

7.1 OMNeT++ Messages

� When directly using OMNeT++ messages
the owner is responsible to delete the mes-
sage. This is not always the creator!

� Never send OMNeT++ messages directly,
only use them as data type.

� When a message is supplied to a task (e.g.,
with invoke()) the called task is the new
owner of the message. After return from this
task the input parameters are invalid. To re-
turn values use the output parameters. The
input parameters are automatically cleared
at the return of invoke().

� When a message is supplied to a method
of the framework, the framework is the new
owner of this message and thus also respon-
sible to delete it.

7.2 Software and hardware tasks

� Software tasks must not invoke() hardware
tasks and vice versa. This is checked by
the framework and leads to a runtime error.
Nonetheless, software tasks can start a hard-
ware task with startTask()

8 Patterns

8.1 Non-blocking functional inter-

faces

To implement a functional interface which re-
turns immediately but starts a parallel action
(e.g. starting an ADC conversion), use the follow-
ing approach. Write the code which runs in paral-
lel in a separate task method. In your functional

interface code use startTask() to start that sep-
arate task. When this has done its job simply
quit the method (e.g. at its end or with return.

8.2 More to come

References

[GSS+04] Y. Gsottberger, X. Shi, G. Stromberg,
W. Weber, T.F. Sturm, H. Linde,
E. Naroska, and P.; Schramm. Sin-
drion: a prototype system for low-
power wireless control networks. In
IEEE International Conference on
Mobile Ad-hoc and Sensor Systems,
pages 513 � 515, 25-27 October 2004.

[H+03] Robert F. Heile et al. 802.15.4: Wire-
less Medium Access Control (MAC)
and Physical Layer (PHY) Speci�ca-
tions for Low-Rate Wireless Personal
Area Networks (LR-WPANs). Tech-
nical report, IEEE Computer Society,
1. October 2003.

[IEE03] IEEE Std. 802.15.4-2003, IEEE Stan-
dard for Information Technology -
Telecommunications and Information
Exchange between Systems - Lo-
cal and Metropolitan Area Networks
(WPANs), 2003.

[MB04] Stefan Mahlknecht and Michael Böck.
CSMA-MPS: A Minimum Pream-
ble Sampling MAC Protocol for
Low Power Wireless Sensor Networks.
WFCS, 2004.

[Roe04] Matthias Roetzer. Routing in en-
ergieautarken Funksensornetzwerken.
Master's thesis, Vienna University of
Technology, 2004.

22

	Wireless Sensor Networks
	Simulation Framework
	Work flow
	Optimization
	The Framework
	Structure
	Discrete Event Simulator
	Basic Concepts
	Modularization
	Tasks
	Functional Interfaces
	CPU
	Timing
	Interrupts
	Environment
	Air
	Power Simulation

	Example
	Modules
	The NED File
	Messages

	Tasks
	Functional Interfaces
	Setup
	Invocation
	Parameters

	Timing
	Hardware tasks
	Software tasks
	Trigger

	CPU
	Callbacks
	CPU Module Implementation

	Power Simulation
	Power Consumption
	Power Sources
	Power Reporter
	Power Logging

	Interrupts
	Scripting
	Usage
	Functionality

	Environment
	Environment Definition

	Air
	Summary
	Tasks
	Casts

	Important Notes
	OMNeT++ Messages
	Software and hardware tasks

	Patterns
	Non-blocking functional interfaces
	More to come

