
Power Aware Wireless Sensor Networks

Module Library

control of the other modules.
● Cross-layer security services and key

management are provided by the Securi-
ty Management Plane.

For any common functionality like the node start-
up the Node Management is responsible.
Additionally to these rather software related
modules there are also hardware modules.

● The CPU module implements the timing
and power consumption of a real micro-
controller CPU.

● Other modules like a Timer, ADC, GPIO,
SPI, ... are usually provided by a micro-
controller and implemented accordingly.

For every module of the module library a detailed
Module Datasheet is enclosed. This documents
its function, interfaces parameters, initialization,
interrupts and other specialties.

Node Management
Common node functionality as well as the inte-
gration of the modules to a whole node are im-
plemented in the Node Management.

● Initialization: The starting point of CPU
execution of a node is put to the node
management. It calls initialization func-
tions of the other modules as specified in
their datasheet.

● Timer: To enable firmware modules to be
independent of the actually used micro-
controller the timer has to be abstracted.

Introduction

The PAWiS Project at the Institute of Computer
Technology, University of Technology, Vienna,
targets on optimized wireless sensor networks
(WSN). These require nodes with exceptionally
low power consumption, yet have to drive sen-
sors and radio communication.

Common optimization approaches concentrate on
modules to make every module as good as possi-
ble. Unfortunately this reveals only local optima.
To find the best possible solution within certain
constraints, the global optimum must be sought.
The PAWiS Framework comes in at this point en-
abling cross layer and cross module optimization.

The PAWiS Simulation Framework is supplement-
ed by the Module Library. This provides numer-
ous implementations of a set of module types.
The module types and the interfaces between the
modules are defined by the Interface Specifica-
tion.

Module Types
The main approach of the module library is to of-
fer modules according to defined module types.
This enables the user to easily exchange module
implementations without touching other modules.
The module types which belong to the network
stack are:

● Application Layer: Typically implements
tasks like measurement, create a packet
and the reception packet.

● Transport: This layer is optional and
used to ensure a reliable end-to-end com-
munication.

● The Network layer handles the routing of
packets. This includes to find a route for
delivering a packet as well as forwarding
of packets.

● Coordination between nodes to access the
RF channel is performed by the MAC
module.

● The Physical module performs the basic
communication between the nodes via the
Air object.

Management Planes
● The Cross Layer Management Plane

(CLAMP) stores global variables for all
other modules.

● Energy Management Plane: This plane
is responsible for an estimation of remain-
ing battery capacity and energy aware

Node Management
S

e
cu

ri
ty

 M
a

n
ag

e
m

en
t

C
ro

ss
 L

a
ye

r
M

a
na

g
e

m
en

t

E
n

e
rg

y
M

a
na

g
em

e
n

t

Physical

Network

Transport

Application

MAC

Network Diagnosis

K
e

y
M

a
n

a
g

e
m

e
n

t
S

e
rv

ic
e

s

S
h

a
re

d
 d

a
ta

b
a

se
S

e
rv

ic
e

s

S
ch

e
d

u
lin

g
A

lg
o

ri
th

m
s

Network Management

Therefore the Node Management imple-
ments a driver for the timer. The abstrac-
tion implements delays with constant du-
ration and with stopping conditions as
well as other frequently used functions.

● Periodic Scheduling implements the ex-
ecution of periodic tasks, e.g., for mea-
surement and listen.

● Interrupts: For platform independence
the interrupt routing, including interrupt
sources, vectors and service routines
have to be adapted for the combination of
the microcontroller and the utilized mod-
ules.

● Main Loop: After initialization the main
operation of the WSN node is started. The
parts which are not captured by interrupt
service routines are implemented here.

Most of the above jobs are done implicitly in the
real firmware. Only for the simulation and the
desired platform independence the adaption be-
tween modules and the microcontroller (CPU,
Timer) have to be implemented.

Cross Layer Management Plane
The main idea of the Cross LAyer Management
Plane (CLAMP) is to provide a rich set of perfor-
mance aware and energy aware network param-
eters to different layers to dynamically adapt ac-
cording to application requirements. This helps to
overcome the limitation, that interfaces are only
between adjacent layers of the network stack.

Interfaces
The interfaces for communication between the
modules are grouped into three types.

● Mandatory interfaces are strictly defined
and must be implemented by the module.
As use you can rely on its existence.

● Optional interfaces are also strictly de-
fined but it is not required to be imple-
mented. If it is implemented then it must
conform to the specification. The module
datasheet mentions the implemented op-
tional interfaces.

● User-defined interfaces are not defined
by the Interface Specification and can be
freely specified and implemented by the
module programmer. It must be docu-
mented in the module datasheet.

Common interfaces between the network layers
are for sending and receiving.

● Send: Originates from the application lay-
er and propagates the packet through the
network layers top-down to the physical
layer.

● The Receive interface is only implement-
ed from the routing layer upwards and in-
voked asynchronously from bottom-up.
The communication between the MAC and
Phy use a dedicated listen interface which
is invoked by the MAC layer according to
the implemented protocol.

Common interfaces to the management planes
include

● to CLAMP: subscribe, query, publish, up-
date

● from CLAMP: onChange (=notify)

● from Nm: init

Available Modules
CPU: MSP430
Routing: EADV
MAC: CSMA-MPS
Phy: CC2400

Availability

The PAWiS Module Library is published under
the terms of the GNU LGPL (Lesser General
Public License). That means that you can
download, use and redistribute it free of charge
while your source code does not need to be li-
censed under the LGPL.

System Requirements: The PAWiS Framework is implemented
platform independently and supports Unix systems (e.g. Linux)
as well as the Windows operating system.

The PAWiS Framework is based on the OMNeT++ 3.3 Discrete
Event Simulation System.

Build tools:
Unix: GNU GCC 4.0+; Autoconf 2.60a, Automake 1.9.6
Windows: Microsoft Visual C++ Ver. 7
LUA 5.2, Doxygen 1.4.7

Recommended system parameters: 100 MB free HDD space,
256 MB RAM, 1024x768 screen resolution, CPU at 1200 MHz

RoutingMac

Mandatory

send

receive

Mandatory

receive

send

OptionalOptional

I

Resources
PAWiS Homepage:

 http://pawis.sourceforge.net/

PAWiS Wiki:

 http://wiki.pawis.sourceforge.net/

