
Interface Specification

Ver. 2.0

PAWiS Interface Specification Ver. 2.0

REVISION HISTORY

Revision Issue Date Author Comment
1.0 2007-04-18 Initial Version of the Specification
1.1
1.2 2008-02-25
2,0 2008-06-30 Prepared for Release 2.0

Institute of Computer Technology, Vienna University of Technology 1/32

PAWiS Interface Specification Ver. 2.0

Table of Contents

1 Introduction..4

1.1 Overview..4

1.2 Scope..4

1.3 Symbol Definitions..4

1.4 Parameter Type Definitions...5

2 WSN Architecture..5

2.1 Introduction..5

2.2 Related Work...6

2.3 Proposed Architecture..7

3 Interfaces and Management Planes..9

3.1 Common Interfaces..9

3.2 Application -Transport Layer...10

3.2.1 Application Layer..11

3.2.2 Transport Layer...11

3.3 Transport - Routing Layer..11

3.3.1 Transport Layer ..12

3.3.2 Routing Layer..12

3.4 Application - Routing Layer..12

3.5 Routing - Mac Layer..13

3.5.1 Routing Layer ...14

3.5.2 MAC Layer ...14

3.6 MAC - Physical Layer...14

3.6.1 Physical Layer ..15

3.7 Cross LAyer Management Plane (CLAMP)..17

3.8 Energy Management Plane..23

3.9 Security Management Plane..24

3.10 Node Management...24

3.10.1 Delay Interfaces...25

3.10.2 Scheduled Interrupts Interfaces...26

3.11 Unified View of Interfaces and different modules...26

3.12 Messages..27

3.13 Implementation..27

3.13.1 PAWiS Simulation Framework...27

3.13.2 Resource constrained firmware...28

Institute of Computer Technology, Vienna University of Technology 2/32

PAWiS Interface Specification Ver. 2.0

3.13.3 Firmware with RTOS..28

 References...28

 A List of Figures and Tables..30

Institute of Computer Technology, Vienna University of Technology 3/32

PAWiS Interface Specification Ver. 2.0

1 Introduction

1.1 Overview

Unlike the Internet, wireless sensor networks have yet to result in wide deployment in the real
world. The unique properties of wireless communications including mobility, rapidly
changing and unpredictable link quality, limited resources in terms of computation and
energy, opportunistic exploitation, environmental obstructions, and new design paradigms
motivates to divert from traditional layered architecture. At the same time, “plug and play”
like features of the layered architecture which resulted in wide range deployment of the
systems are required. In this paper we focus on the layered protocol architecture for wireless
sensor networks, which provides the benefits of traditional layered architectures
(interoperability) as well as focuses on cross layer design to leverage from the benefits offered
by unique wireless communication properties.

1.2 Scope

The scope of this document is to specify a protocol architecture for Wireless Sensor Networks
(WSN). The interfaces between different layers and management planes are also specified in
this document.

1.3 Symbol Definitions

Functional Interfaces of each module may represented as a graphical symbol as shown in
Table 1.

Table 1: Description of symbols used in interface diagrams

Symbol Description
Function call from within a module to invoke a functional
interface in an adjacent module. The user can name it anything
whatever he/she wants to.
A functional interface invoked by a callee of an adjacent layer.
The name of this functional interface cannot be changed. The
shaded region at the back depicts that some data is associated
with its invocation. E.g. “receive” in AL is asynchronously
invoked by lower layers when data arrives at the node.

I

An interrupt driven functional call, used to interrupt the next
upper layer on the reception of data so that the received data
can be processed first. E.g. “sendAbove” in ML to interrupt the
CPU so that the RL can handle the data before the CPU does
something else on behalf of some other module. It can have
any name.
A functional interface called by the callee to query or notify
some thing to the adjacent layer. For instance, querying
regarding channel status or notifying to listen.

Institute of Computer Technology, Vienna University of Technology 4/32

PAWiS Interface Specification Ver. 2.0

1.4 Parameter Type Definitions

Parameter types used in the document and their description can be found in Table 2. All
parameters of the CLAMP database (discussed in section 3.6) are associated with a particular
type. For every type an additional value “null” is introduced, which expresses an unset or
unavailable value. This is the default value of all variables if not defined by the owner of the
parameter.

Table 2: Parameter types used in the specifications

Parameter
Type

Description

percent 8 bit unsigned integer, 0 = 0%, 255 = 100%
int8 8 bit unsigned integer
int16 16 bit unsigned integer
int24 24-bit unsigned integer
int32 32-bit unsigned integer
sint8 8-bit signed integer
enum enumeration, values are described explicitly
time double, time in seconds
bool boolean, values true and false

2 WSN Architecture

2.1 Introduction

The OSI reference Model divides the network architecture into seven well defined logical
layers; each layer is responsible for some specific task. In such referenced architectures, the
communication between non adjacent layers is not allowed [1]. For sensor networks with
constrained resources and its longevity requirements cross layer design and interaction
becomes necessary. Cross layer design according to [1] is “Protocol design by the violation of
reference layered communication architecture is cross-layer design with respect to the
particular layered architecture.” According to [1], the violation of referenced design may
include redefinition of boundaries, creation of new interfaces between adjacent and non-
adjacent layers, tuning of parameters on different layers on the basis of change in network
parameters from another layer, and interdependency between layers of protocol design. We
define cross layer optimization as adapting certain parameters of one of the layers on the basis
of feedback from another layer to achieve certain optimization (Energy efficiency or end to
end delay for instance).

The authors of [2] discuss the importance of good architectural design and have emphasized
that only performance enhancements at the cost of good architectural design can never result
in a system which can be globally deployed like the Von Neumann, the OSI, and the
Shannon’s communication architectures. The main point the authors want to stress is that,
“the trade-off between performance and architecture needs to be fundamentally considered”.
At the same time the traditional layered networking approach has loopholes in terms of
performance and efficiency of the system [33].

We introduce a layered protocol architecture, which takes care of the issues discussed in [2],
as well as provide benefits from the unique wireless communication characteristics by a cross
layer approach. The proposed architecture is composed of traditional layers, including
application, transport, network, link, and physical layer. The application layer (AL) (as in

Institute of Computer Technology, Vienna University of Technology 5/32

PAWiS Interface Specification Ver. 2.0

Figure 1.) is in direct contact (can communicate via well defined interfaces) with routing
(RL). The direct connection between AL and RL is required where no Transport Layer (TL) is
used (As for most cases in sensor networks, end to end communication is not important and
mostly relies on hop by hop paradigm). The interfaces between RL and Mac Layer (ML), and
ML and Physical Layer (PL) are introduced. Inspired from [3], we introduce a Cross LAyer
management Plane (CLAMP), which we call “blackboard”, to provide cross layer benefits but
in an optional way so that the concept of modularity of layered architectures is maintained.
Every change in the sensor network related parameters is written to the blackboard (a shared
database in the CLAMP) by the concerned layer (owner of the parameter e.g. AL is the owner
of delay requirements related parameters), and any layer interested in any of the parameters
can subscribe to that information, and hence it would be available to that particular layer
locally with the help of a call back function. As a wireless sensor node has limited energy and
it is not practical to replace the energy supply unit because of cost or geographic reasons, an
energy management plane is introduced to provide services to different layers and implement
key management algorithms. In most cases, security is considered as a stand-alone component
of system architecture which usually is a flawed approach to network security [31]. We
present a security management plane so that security can easily be integrated into every
component as discussed in [31].

2.2 Related Work

In [4], the authors have presented a unifying link abstraction for wireless sensor networks. The
main goal of [4] is to achieve generality and efficiency. They consider Sensor-net Protocol
(SP) as a “narrow waist”, just like Internet protocol for the Internet. SP is an abstract layer
present between the network layer and the link layer enabling different routing and MAC
schemes to co-exist. They have introduced the concept of neighbor table in which data related
to the neighbors are kept so that different protocols running on the same node do not keep
independent routing tables and get access to the routing and link layer parameters in this
shared table. Motivated by link optimizations, they have also used a message pool. Our
approach is different from it in many ways. Firstly, we follow the basic architectural style as
of the OSI because is it well established and successful. We do not define a message pool,
neighbor table, an additional abstract layer, and additional vertical plans (other than we have
defined) because of resource constraints on sensor nodes.

The authors in [5] discuss architectures for heterogeneous wireless sensor networks. They
have classified the applications, routing and MAC schemes into different categories and have
introduced Protocol Stack Trees (PST), which is a combination of different existing protocols
and are able to satisfy different application requirements. The authors talk about cross layer
entities but in a general way.

ZigBee [6] stack architecture is based on OSI reference model but considers only the layers
which could achieve the required functionality for the specific market. The physical layer and
the medium access control sub-layer are defined by the IEEE 802.15.4 [7] standard while
ZigBee Alliance defines the layers above. Why ZigBee cannot provide a viable solution is
discussed in [4] as “ZigBee proposes a classic layered architecture, but each layer assumes a
specific instance of the surrounding layers: e.g., the routing layer assumes the IEEE 802.15.4
link and physical layers. An architecture build on static technologies is destined for
obsolescence”.

In [8] the authors discuss network stack architecture for future sensors. They have introduced
an architecture composed of Application Layer, Data Fusion Layer, Data Service Layer,
Medium Access Layer and Radio Layer. The authors argue that the data fusion layer is
important as it may needed to fuse data based on application requirements or based on a fact
that the sensed data may be correlated and would require data fusion. The authors further

Institute of Computer Technology, Vienna University of Technology 6/32

PAWiS Interface Specification Ver. 2.0

argue that having this layer would reduce end to end latency as the message will not have to
go up the stack till application layer at relay nodes or specified nodes. The data service layer
essentially serves the purpose of a routing layer with functionalities like logical naming and
filtering, packet gathering and scattering, and next hope determination. The MAC and routing
layer serves the purpose as in traditional architectures. They have also introduced an
Information Exchange Layer as a shared database that serves the purpose of cross layer
optimization. In the proposed architecture, no emphasis is given to security concerns and it is
stated that the data service layer can handle it. It also lacks energy management plane as
energy efficiency and system life time is one of the main challenges faced by research
community in this specific area.

In [Lim06], the authors proposes a cross layer optimization frame with an optimization agent
which provides top down and bottom up feedback to different layers of the protocol stack to
benefits from the current network conditions. In principal our approach is similar to the one
discussed in [Lim06], but we define a set of well-known parameters in advance which can
effect network performance and energy utilization at run time. Knowing the set of parameters
in advance, modules on different layers can be exchanged with any modifications in the entire
protocol stack. We also keep the usage of these parameters to be optional so that if a particular
module on some layer does not want to use them, the architecture should be flexible enough to
accommodate this.

[Sri04] presents the benefits of cross layer feedback and related survey but does not propose a
specific architecture for cross layer design.

The authors in [Rai04] present cross layer feedback architecture for wireless networks. They
introduce tuning layers (to provide interfaces to data structures stored on different layers) and
optimization subsystems (algorithms for cross layer optimizations) to avail cross layer
benefits. As the architecture is proposed for wireless networks; the processing overhead of
tuning layers and optimizations subsystems may not be well suited for low power wireless
sensor networks.

2.3 Proposed Architecture

The main focus of the proposed solution is two-fold:
• It should be as similar as possible to the traditional layered architectures because they

have already proven to be successful and have resulted in world wide deployment (e.g.
TCP/IP protocol stack)

• It should deal with the unique characteristics offered by the wireless communication
paradigm (e.g. mobility, rapidly changing and unpredictable link quality, limited
resources in terms of computation and energy) by a cross layer design approach.

The proposed architecture comprises traditional layers and new management planes as shown
in Figure 1. We include a physical, MAC, routing, an optional transport and an application
layer similar to the OSI model [32]. The cross layer, energy, and security management planes
all connect to the full set of layers for unlimited interaction to gain the full optimization
potential. Network diagnosis and management (e.g. resetting nodes, remote firmware
deployment, address assignment, querying availability of nodes) sits above all layers and
planes (node management).

For each of the layers and planes we propose defined interfaces. Each of these entities can be
implemented in several different ways (i.e. different MAC protocols) and then used
interchangeably in conjunction with the other layers. The defined interfaces allow replacing
one such entity without having to touch the others. For every pair of two such entities the
interfaces of both sides are drawn in interface graphs. The symbols used to depict the

Institute of Computer Technology, Vienna University of Technology 7/32

PAWiS Interface Specification Ver. 2.0

functional interfaces and calls are shown in table 1. We would discuss these layers and planes
one by one in the proceeding sections. For an abstract layered architecture refer to Figure 1.
For detailed architecture refer to Figure 2.

Interfaces are divided into three groups. Mandatory interfaces have to be implemented by the
module with the specified parameters and functionality. Optional interfaces can be
implemented or not. If they are implemented they have to fully conform to the specification.
User defined interfaces can be defined and implemented according to the user's needs.

Node Management

S
e

cu
ri

ty
 M

a
n

ag
e

m
en

t

C
ro

ss
 L

a
ye

r
M

a
na

g
e

m
en

t

E
n

e
rg

y
M

a
na

g
em

e
n

t

Physical

Network

Transport

Application

MAC

Network Diagnosis

K
e

y
M

a
n

a
g

e
m

e
n

t
S

e
rv

ic
e

s

S
h

a
re

d
 d

a
ta

b
a

se
S

e
rv

ic
e

s

S
ch

e
d

u
lin

g
A

lg
o

ri
th

m
s

Network Management

Figure 1: Proposed protocol architecture for wireless sensor networks

Institute of Computer Technology, Vienna University of Technology 8/32

PAWiS Interface Specification Ver. 2.0

AL

TL

NL

ML

PL

Node Management

C
ro

s
s

 L
a

y
e

r
M

a
n

a
g

e
m

e
n

t

E
n

e
rg

y
 M

a
n

a
g

e
m

e
n

t

S
e

c
u

ri
ty

 M
a

n
a

g
e

m
e

n
t

Terminal Trigger

Protocol Handler

send

send

send

send

receive

receive

receive

listen Carrier sense setPower
Mode

GPIORS232

CPU

Radio

Sensors

Timer

Figure 2: Proposed protocol architecture for wireless sensor networks with connections
between different layers and hardware modules

3 Interfaces and Management Planes

3.1 Common Interfaces

● onChange: It is available at all horizontal layers (AL, TL, RL, ML, PL and NM). It is
discussed only once, as its syntax and semantics are the same for all layers. It is
invoked by the CLAMP whenever a change occurs in a parameter to which the
respective layer is suscribed.

○ In:

■ 0: (string) represents the parameter name.

■ 1: (Management::t_ClampNotifyReason) indicates the reason. There
are three possible values:

Institute of Computer Technology, Vienna University of Technology 9/32

PAWiS Interface Specification Ver. 2.0

● nrNone: No reason. Inadvisable.

● NrUpdate: The value has been updated.

● NrPublish: The value has been published. This value is used when the
service has suscribed to an unpublished parameter.

■ 2: (variant). It contains the value of the corresponding parameter.

● init: It is an optional interface invoked by Nm on startup, before any other interface is
invoked. Its function is to initialize the module. All the startup code must be included
in this interface.

○ In:

■ 0: (int) This parameter is used to arrange different types of initialization, such
as multi-part init, full init (setup+init) or reduced init (only init). The default
value is 0. Other values may be implemented by users.

3.2 Application -Transport Layer

As the sensor nodes are very application specific, most of the sensor networks are applied to
monitor a single or a group of similar phenomena. A few applications introduced previously
include container tracking and monitoring [9], building automation and monitoring [10],
traffic routing [11], environmental and habitat monitoring [12], health care [13], military
applications [13], and smart environments [14]. In [5], the author has classified the wireless
sensor networks applications on the basis of information delivery (query driven, event driven,
and continuous), delay (real time, non-real time, and delay tolerant), infrastructure type
(homogeneous and heterogeneous), and deployment (deterministic and non deterministic).

In [15], the author mentioned that the transport layer is required when the system has to talk to
the internet or any other communication network but most of the communication within
sensor networks is done hop by hop (no notion of end to end delivery in many cases), and
normally there are dedicated nodes per sensor networks, which are connected to the external
world.

Having discussed diverse network application requirements (combination of the above
different classifications), it can be dealt with in two ways as discussed earlier: either go for an
application specific architecture to attain performance gains (e.g. energy efficiency or end to
end delay) at the cost of good architectural design or rely on a more generic solution at the
cost of performance. As our focus is to draw the line somewhere in-between, we provide
simple interfaces between AL and TL as shown in Figure 3.

Institute of Computer Technology, Vienna University of Technology 10/32

PAWiS Interface Specification Ver. 2.0

ApplicationTransport

Mandatory

send

receive

Mandatory

receive

send

OptionalOptional

I

Figure 3: Interfaces between AL and TL

3.2.1 Application Layer

● receive: Mandatory interface invoked from the lower layer (transport or routing layer).

○ In:

■ 0: (AppPacket) Application data packet.

○ Out:

● 0: (int) Error value. An output of 0 or a positive value means that the operation
finished without problems. A negative value means that an error occurred.

3.2.2 Transport Layer

● send: Mandatory interface invoked by the upper layer (application layer).

○ In:

■ 0: (AppPacket) Application data packet.

○ Out:

■ 0: (int) Error value. An output of 0 or a positive value means that the
operation finished without problems. A negative value means that an error
occurred.

3.3 Transport - Routing Layer

Depending on the application, the network may require a transport layer or not. Ad hoc
networks do not have end-to-end communication and will not use the transport layer.
However, there will be applications that do require an end-to-end communication, which is
supported by the transport layer. As the transport layer is not always used, its operation must
be completely transparent. The “receive” interface in the application layer works with both
transport and routing layer. On the other hand, the “send” interface in the routing layer works

Institute of Computer Technology, Vienna University of Technology 11/32

PAWiS Interface Specification Ver. 2.0

with both the transport and the application layer. Hence, the transport layer can be safely
removed depending on the requirements.

TransportRouting

Mandatory

send

receive

Mandatory

receive

send

OptionalOptional

I

Figure 4: Interfaces between TL and RL

3.3.1 Transport Layer

● receive: Mandatory interface invoked from the lower layer (transport or routing layer).

○ In:

■ 0: (TransportPacket) Transport data packet.

○ Out:

■ 0: (int) Error value. An output of 0 or a positive value means that the
operation finished without problems. A negative value means that an error
occurred.

3.3.2 Routing Layer

● send: Mandatory interface invoked by the upper layer (application layer).

○ In:

■ 0: (TransportPacket) Transport data packet.

○ Out:

■ 0: (int) Error value. An output of 0 or a positive value means that the
operation finished without problems. A negative value means that an error
occurred.

3.4 Application - Routing Layer

In [16], the authors presents a survey on energy efficient routing protocols by classifying them
into different categories known as data-centric, hierarchical and quality of service routing,
each of them suitable for a specific application or a group of application scenarios. Mobility,

Institute of Computer Technology, Vienna University of Technology 12/32

PAWiS Interface Specification Ver. 2.0

localization, and data fusion/aggregation services are also required to decrease energy
utilization in wireless sensor networks. Keeping in view energy, size, and memory constraints,
we provide a simple set of interfaces between RL and its adjacent layers. The rest of the
components (data fusion and aggregation, localization, mobility management, forwarding,
determining minimum path cost) are to be implemented within the RL as sub-modules.

We provide interfacing between AL and RL, so that if in a particular case, the TL is not
implemented, the architecture is still flexible enough to accommodate this. The interfaces
provided between TL and AL as well as between TL and RL are the same as between AL and
RL. For interfaces between AL and RL, refer to Figure 5.

ApplicationRouting

Mandatory

send

receive

Mandatory

receive

send

OptionalOptional

I

Figure 5: Interfaces between AL and RL

3.5 Routing - Mac Layer

The attributes of MAC schemes for wireless sensor networks include energy efficiency,
scalability and adaptability to changes [17]. There is a wide range of MAC schemes ([18],
[19], [20], [21], and many more) introduced previously, each of them suiting a specific group
of application requirements. The interfaces between ML and RL are the same set as discussed
for RL and AL (see Figure 6).

RoutingMac

Mandatory

send

receive

Mandatory

receive

send

OptionalOptional

I

Figure 6: Interfaces between RL and ML

Institute of Computer Technology, Vienna University of Technology 13/32

PAWiS Interface Specification Ver. 2.0

3.5.1 Routing Layer

● receive: Mandatory interface invoked from the lower layer (MAC Layer).

○ In:

■ 0: (RoutingPacket) Routing data packet.

■ 1: (unsigned int) The MAC address of the source.

■ 1: (unsigned int) The MAC address of the destination.

○ Out:

■ 0: (int) Error value. An output of 0 or a positive value means that the
operation finished without problems. A negative value means that an error
occurred.

3.5.2 MAC Layer

● send: Mandatory interface invoked from the upper layer (Routing Layer), whenever
data needs to be transmitted.

○ In:

■ 0: (RoutingPacket) Routing data packet.

■ 1: (unsigned int) The MAC address of the destination.

○ Out:

■ 0: (int) Error value. An output of 0 or a positive value means that the
operation finished without problems. A negative value means that an error
occurred.

3.6 MAC - Physical Layer

The role of the physical layer in wireless sensor networks is not well defined yet [1]. This is
because of the new modalities in wireless systems. As an example, in some radios, [22], the
CRC check is implemented in hardware. Similarly, a wakeup radio [21] may require
additional processing at the physical layer to figure out if the packet is intended for this
specific node or not (This can be used to drop packets not intended for it and hence save
processing energy at upper layers). These issues can be dealt with either by introduction of
additional bits in frame headers or can be achieved with the help of user-defined interfaces
available at the user’s disposal. We do not provide specification for optional interfaces for this
task because this cannot be uniquely solved. See Figure 7 for the interfaces between ML and
PL.

Institute of Computer Technology, Vienna University of Technology 14/32

PAWiS Interface Specification Ver. 2.0

MAC

Mandatory

Physical

send

Mandatory

listen

send

Optional

carrierSense

listen

carrierSense

setPowerModesetPowerMode

Optional

 Figure 7: Interfaces between ML and PL.

3.6.1 Physical Layer

● send: Invoked by the upper layer when data needs to be submitted to the
communication medium.

○ In:

■ 0: (MacPacket) MAC layer data packet.

● carrierSense: Blocking call from upper layer. Checks for a carrier signal.

○ In:

■ 0: (simtime_t) Time limit for carrier sensing.

○ Out:

■ 0: (bool) Indicates whether the carrier signal has been found.

● setPowerMode:

○ In:

Institute of Computer Technology, Vienna University of Technology 15/32

PAWiS Interface Specification Ver. 2.0

■ 0: (int8) Represents the power mode. 0 means off, 128 means sleep mode
and 255 means full operational. The values in between the specified values
can be used to utilize full granularity of different power modes. For
example, the user can define further power modes, like crystal oscillator
stable or PLL locked.

● listen:

○ In:

■ 0: (simtime_t) Time to listen

○ Out:

■ 0: (PhysicalPacket) Physical data packet. Null if none was received.

■ 1: (int32) Bit count of received packet. Null if none was received.

■ 2: (int32) Number of bit errors in the received packet. Null if none was
received.

● listenmode (optional interface):

○ In:

■ 0: (ListenMode_t)

● lmOn: switch Phy to permanent listen mode; this mode is only left if a
packet is received or this call is called with lmOff.

● lmOff: switch off permanent listen mode

● lmRetrieveData: retrieve data of last received packet

○ Out (In0 == lmOn)

■ 0: (bool) true: success; false: error

○ Out (In0 == lmOff)

■ 0: (bool) true: success; false: error

○ Out (In0 == lmRetrieveData)

■ 0: (PhysicalPacket) Physical data packet. Null if none was received.

■ 1: (int32) Bit count of received packet. Null if none was received.

■ 2: (int32) Number of bit errors in the received packet. Null if none was
received.

Institute of Computer Technology, Vienna University of Technology 16/32

PAWiS Interface Specification Ver. 2.0

3.7 Cross LAyer Management Plane (CLAMP)

The main idea of the CLAMP is to provide a rich set of performance aware and energy aware
network parameters to different layers to dynamically adapt according to application
requirements. The CLAMP provides ,”publish”, “update”, “query”, and “subscribe” interfaces
to each of the protocol stack layers (Figure 8). Initially, that CLAMP database is empty and it
does not know about any of the parameters. Each layer can publish any of the parameters it
owns and it wishes to share with other layers. Each layer can subscribe to parameters of
interest, with the help of the “subscribe” interface. The CLAMP will “notify” these values to
the subscribers if there is an “update” in the subscribed values. This is attained by the
functional interface “onChange” available at each layer. The CLAMP allows only the owner
of the parameter to “update” a certain value. For example, AL is the owner of parameters
“delay” and “packetLoss” as shown in Figure 8. First of all, AL will “publish” these
parameters to the CLAMP database. Now only AL is allowed to update these parameters,
while the rest of the layers can subscribe to the desired parameters and would be notified in
case of any change. If a certain layer wants to subscribe to a particular parameter which is not
already published, an error message is returned. Any layer can query the particular parameter
with the “query” interface if it uses the parameter rarely and does not require to be notified
every time the parameter is updated. The dotted lines in Figure 8 depict the owners of
different parameters in the CLAMP. We have not shown the interfaces between CLAMP and
other layers other than AL because they are all the same.

CLAMPLayered Architecture

Application

Transport

Routing

MAC

Physical

packetLoss,
delay,

RemainingBattery
Capacity,

dataRate,
SNR,

packetLenght,

linkQuality,

modulation,

BER,

numberOfNieghbors,
Location,

onChange

publish

subscribe

notify

endToEnd
Requirement

Address,

outputPower,

I

update

publish

Energy
Management Plane

publish

update

publish

update

subscribe

update

Security
Management Plane

queryquery

Institute of Computer Technology, Vienna University of Technology 17/32

PAWiS Interface Specification Ver. 2.0

Figure 8: Interfaces between different Modules and CLAMP.

CLAMP database initially does not know about any of the parameters but these parameters are
explicitly defined (though not provided to CLAMP database in the start but are well known)
so that the processing overhead of parameter discovery routines may be avoided. For example,
parameters “delay”, “packetLenght”, and “outputPower” (see Figure 9) are publish()ed by the
respective owners and CLAMP know about these parameters. Now if ML want to subscribe()
to parameter “Address”, which is not published yet, CLAMP simply would return an error
message. Any of the parameter can also be query()ed by any of the modules.

CLAMP

packetLoss,
delay,

RemainingBattery
Capacity,

dataRate,
SNR,

packetLenght,

linkQuality,

modulation,

BER,

numberOfNieghbors,
Location,

endToEnd
Requirement,

Address,

outputPower,

CLAMP Database
Services

subscribe

notify

publish

update

query

Figure 9: CLAMP architecture

● publish: Called by owner of the parameter to publish the parameter to the CLAMP
database. A parameter with the same name must not have been already published by
another module. Modules already subscribed to the parameter published get notified.

○ In:

■ 0: (string) name of the parameter being published.

○ Out:

■ 0: (bool) flase on duplicate parameter name.

● subscribe: called by any of the layers to subscribe to a certain parameter.

○ In:

■ 0: (string) name of the parameter to suscribe.

Institute of Computer Technology, Vienna University of Technology 18/32

PAWiS Interface Specification Ver. 2.0

○ Out:

■ 0: (bool) true if the parameter was already published, false if it was not (yet).

● update: Owner of the parameter invokes this functional interface to update any of the
values it owns.

○ In:

■ 0: (string) name of the parameter.

■ 1: (variant) new value of the parameter.

○ Out:

■ 0: (bool) false on error.

● query: called by any of the layers to query about the value of certain parameter.

○ In:

■ 0: (string) name of the parameter.

○ Out:

■ 0: (bool) status: true = ok, false = unknown parameter.

■ 1: (variant) the value of the parameter.

The network parameters that are provided by the CLAMP to different layers can be useful in
many ways. See Table 2 and 3 for data types and meaning of these parameters. When and how
to use these parameters is a challenging issue [1]. Table 3 also discussed potential use of each
of the parameters.

Table 3: Profile and Potential Use of CLAMP Parameters

Parameter Profile

Delay Owner: Application Layer

Meaning: Delay tolerance defined by the Application Layer. 0 % would
mean real time application with strict end to end delay requirements.
100% means that there are absolutely no delay requirements. Note that
this parameter does not state anything about the tolerable packet loss (see
packetLoss below).

Type: percent

Potential Use: The Application Layer would define delay tolerance and
Routing Layer may act accordingly, keeping in view the delay tolerance,
remaining battery capacity or any other potential parameter. For least
value of the delay tolerance, the rouging layer may decide to sent
information by minimum hop-count metric or on less congested routes to

Institute of Computer Technology, Vienna University of Technology 19/32

PAWiS Interface Specification Ver. 2.0

meet the requirements of application.

packetLoss Owner: Application Layer

Meaning: Packet Loss Tolerance defined by Application Layer

Type: percent. 0 percent means high reliability and no packet losses are
acceptable while 100 % means it can tolerate high packet loss.

Additional Considerations: A low value of packetLoss may require a
Transport layer for end to end reliability and also initiates the need of
acknowledged services.

Potential Use: The Application Layer may set it to notify other layers,
regarding its packet loss tolerance and the Routing Layer or Mac Layer
can avoid acknowledgment messages, or retransmissions to save some
energy.

Address Owner: Routing Layer

Meaning: Logical address set by the routing layer.

Type: int16; FFFFh is the broadcast address.

Additional Considerations: The maximum numbers of nodes that can be
supported are 216-1.

Potential Use: The own address is written to this field and can be used by
different layers, e.g. if a wakeup radio is used, and it is woken up by a
wake-up signal including the address of the node, so it can decide what to
do. The address may change from time to time depending upon Routing
Layer requirements and hence included here.

Location Owner: Routing Layer

Type: three int24. The location is defined by the longitude and latitude
and elevation for some specific location e.g. <03'37"55, 56'13"23, 837m>.
The full range of the int24 is scaled to the full range of longitude and
latitude, respectively. The elevation is given in meters.

Additional Considerations: do we need date and time information to be
stored as well?

Potential Use: The reference or global location information is provided by
Routing Layer and can be used by different layers, e.g. Application Layer
may decide that it has already enough information regarding the required
phenomenon in a specific location and it does not need this information
from a group of nodes for some time (defining area dominating sets
[Car05]). So this group of nodes can go to sleep to save energy. The
location can also be very helpful to geographic aware routing [Ren06].

noOfNeighbo
rs

Owner: Routing Layer

Institute of Computer Technology, Vienna University of Technology 20/32

PAWiS Interface Specification Ver. 2.0

Meaning: number of neighbors of a node.

Type: int8

Additional Considerations: Theoretically, the number of neighbors can be
greater than 255, but than for low power sensor networks, it would result
in processing overhead in terms of maintaining the routing table and
computing the lowest cost route. In case the number of neighbors is
greater than 255, the first 255 neighbors with lowest route cost can be
stored.

Potential Use: This information may be utilized by the MAC layer for
synchronization purposes or adaptive division of times slots for accessing
the medium.

linkQuality Owner: MAC layer

Type: percent; 0 = 0% means worst possible quality, 255 = 100%
means excellent quality. Of course not the full granularity has to be
utilized. The following values are suggested for a reduced set of states:
0..31 = bad, 32..95 = below average, 96..159 = average, 160..223 = good,
224..255 = excellent.

Additional Considerations: The MAC layer may set only the link quality
based on SNR and BER and do not provide the other parameters.

Potential Use: If the link quality is better, the Physical can increase the
data rate to exploit the opportunity or it may decrease the transit power to
save energy.

BER Owner: MAC Layer

Meaning: bit error ratio, calculated by -10*log10(BER), so 40 means 10-4,
70 means BER = 10-7

Type: int8

Additional Considerations: A calculation model of the BER is not
provided here. A receiver could estimate the BER (and/or SNR) from a
received packet and its count of bit errors. In WSNs this is a major
computation effort and therefore usually not provided.

Potential Use: Depending upon BER, the Physical Layer can increase the
output power or it can be compared with packet loss tolerance of the
Application Layer and decide what to do.

packetLenght Owner: MAC layer

Meaning: define packet length of a MAC packet in bytes

Type: int8

Institute of Computer Technology, Vienna University of Technology 21/32

PAWiS Interface Specification Ver. 2.0

Default Value: 0

Additional Considerations: Here we talk about the Packet Length which is
actually transmitted over the physical medium as this length is the one
which affects different network variables [see table 4 for details]

With the specified type int8 it is only possible to transmit packets with
less than 256 bytes. This current specification does not consider larger
packets, MTU or segmentation and reassembly.

Potential Use: The packet length can effect output power and bit error rate
[Vij03]. Short packet sizes results in inefficient energy usage because of
large overheads while long packet sizes may experience higher number of
errors, so energy efficiency can be maximized by optimal packet size
[Joe04].

modulation Owner: Physical Layer

Meaning: digital modulate technique utilized for the main transceiver

Type: enum: 1 = OOK, 2 = FSK, 3 = ASK, 4 = BPSK, 5 = QAM, more
will be defined

Potential Use: The modulation at Physical layer can be changed
depending upon the remaining capacity of the battery [Vij03]. The number
of packets in the system (in buffer or queue or being in transmission) can
affect the constellation size of the modulation scheme [Abe01].

SNR Owner: Physical Layer

Meaning: Signal-to-Noise-Ratio of the received packet expressed in dB.

Type: int8

Additional Considerations: Usually a transceiver offers an RSSI value but
you can't measure the noise level. Therefore the SNR value will not be
provided by most implementations.

Potential Use: If the SNR is more, and application layer has provision of
delay tolerance, and the battery capacity is also low, than it can be decided
to back off for some time and complete communication later on or
otherwise output power can be increased.

dataRate Owner: Physical Layer

Meaning: data rate in kilo-bits per second, i.e. a value of 250 indicates a
data rate of 250kbps.

Type: int16

Potential Use: The lifetime of the network can be extended by using
varying data rate at each node in the routing path. Reducing transmission
rates at critical node (energy constrained) also results in extended network

Institute of Computer Technology, Vienna University of Technology 22/32

PAWiS Interface Specification Ver. 2.0

life time [Abo04]. If data rate is increased, the probability of encountering
errors also increases, so a higher value of SNR would be required at the
transmitting end to have an acceptable value of BER at the receiving end.
Higher SNR means higher transmitting power [Wan06].Based on the data
rate requirements, modulation scheme can be selected [Wan06].

outputPower Owner: Physical Layer

Meaning: transmission power of the radio given in dBm

Type: sint8

Potential Use: The modulation scheme, with certain BER threshold values
and SNR can be used to calculate the transmit power [Wan06].The
optimal transmit power increases with increase in the data rate (vulnerable
time is decreased but thermal noise is alos increased). [Fer06] A carefully
chosen data rate can have high impact on transmit power and network life
time [Fer06].

remainingBat
teryCapacity

Owner: Energy Management Plane

Meaning: remaining batter capacity in mWs, i.e. a value of 100 means
there are 100mWs. Full scale value means that remaining capacity is more
than the value can represent.

Type: int16

Additional Considerations: Calculating this value is difficult because the
voltage characteristic (commonly used to calculate the capacity) of
accumulators doesn't offer good estimations. From this value a decision
should be done whether we continue to send packets or we send a “I go to
sleep” packet. The resolution for such a value should fit for large batteries
(10Ah) down to capacitors (1F). Therefore a value giving the relative
capacity of the battery (0-100%) would be better suited.

Potential Use: If the remaining capacity is at some threshold, than the
node can back-off for some time, to allow the battery to recover and than
take part in communication.

3.8 Energy Management Plane

Sensing, communication, and processing are three main energy consuming components in a
wireless sensor node [25]. As the sensor nodes are battery operated or powered by an energy
scavenging technique, the restricted amount of energy in a sensor node becomes the main
issue in the deployment of a sensor network. As technology advancement in the chemistry of
batteries is slow compared to silicon chip technology [26], the Energy Management Plane
(EMP) may provide a viable solution for efficient energy utilization.

The goal of the EMP is to maximize the network life time. When taking into consideration
batteries, the actual capacities are different from rated capacities because of non linear battery

Institute of Computer Technology, Vienna University of Technology 23/32

PAWiS Interface Specification Ver. 2.0

effects, different algorithms [24],[27], and [28] can be implemented in the EMP to find out
the remaining capacity of the battery, which can be utilized by different layers to do energy
aware computing.

The EMP may also take the responsibility for scheduling of different events to save energy.
Such events include periodic listening, sensing of different types of sensors, updating timers,
or analyzing incoming messages. Because it consumes time and energy to either change the
state of the radio from sleep/idle to transmit state or any other hardware such as turning on the
power supply of the sensors or waking up the CPU, it is very critical to implement algorithms
which synchronize different activities.

For example, lets consider the radio is woken up to receive certain data, than it may prove
energy efficient, to activate the sensing task and send the data to the required destination while
the radio is being in wake-up state in contrast to waking up the radio again specifically to send
the data.

Such energy management concepts are usually implemented implicitly in the sensor node
firmware, e.g. by placing function calls in a specific order. Changing these concepts at
development time is mostly tedious, whereas dynamic reconfiguration is nearly impossible.
The EMP enables implementing these concepts in an explicit manner.

With this explicit approach it is easily possible to investigate various energy management
concepts during development time. The defined interfaces ensure seamless interchangeability.
Such an energy management concept can even dynamically change its behavior depending on
the remaining energy.

The space and time complexity of these algorithms needs in-depths consideration, as we need
to find out the relationship between energy utilized by these algorithms (processing energy) on
individual nodes and the analysis of prolonging the network life time before implementing
them.

3.9 Security Management Plane

Because of limited resources, security requirements in wireless sensor networks are more
challenging than in conventional networks. Security for wireless sensor networks entails key
establishment and trust setup, secrecy and authentication, privacy, secure routing, intrusion
detection, and secure data aggregation [29]. We provide a security management plane (SMP)
similar to the “security service provider” in ZigBee Security Architecture [6] where every
layer is connected to it with standardized interfaces. SMP include key management algorithm
and provides security services to individual layers like helping RL in secure routing,
encryption and decryption at ML, and/or authentication at TL. These functionalities are
provided by a “services” component of SMP.

3.10 Node Management

The node management layer deals with timing issues. There are three categories for these
timing issues: delays, scheduled interrupts and periodic tasks.

Institute of Computer Technology, Vienna University of Technology 24/32

PAWiS Interface Specification Ver. 2.0

3.10.1 Delay Interfaces

● timerGet: stores current timer value for later use in timerDelayRelative() and
timerDiff().

○ Out:

■ 0: (simtime_t) Parameter for timerDelayRelative() and timerDiff().

● timerDelay: Delays the execution for a certain amount of time. The delay is stored as
timer tics in an unsigned int.

○ In:

■ 0: (simtime_t) Delay in seconds, rounded down to timer tics.

■ 1: (t_PowerMode) The state the CPU and its peripherals must held during
the delay.

● timerDelayRelative: Delays the execution for a certain amount of time relative to a
previously stored timer value.

○ In:

■ 0: (simtime_t) Delay in seconds, rounded down to timer tics.

■ 1: (simtime_t) Previously stored timer value (from getTimer()).

■ 2: (t_PowerMode) The state the CPU and its peripherals must held during
the delay.

● timerDelayUntil: Delays the execution for a certain amount of time or until a certain
condition is true.

○ In:

■ 0: (simtime_t) Delay in seconds, rounded down to timer tics.

■ 1: (TaskControl::Predicate*) Determines when the delay is finished.

■ 2: (t_PowerMode) The state the CPU and its peripherals must held during
the delay.

● timerDelayRelativeUntil: Delays the execution for a certain amount of time relative
to a previously stored timer value or until a certain condition is true.

○ In:

■ 0: (simtime_t) Delay in seconds, rounded down to timer tics.

■ 1: (simtime_t) Previously stored timer value (from getTimer()).

■ 2: (TaskControl::Predicate*) Determines when the delay is finished.

Institute of Computer Technology, Vienna University of Technology 25/32

PAWiS Interface Specification Ver. 2.0

■ 3: (t_PowerMode) The state the CPU and its peripherals must held during
the delay.

● timerDiff: Measures elapsed time.

○ In:

■ 0: (simtime_t) Previously stored timer value (from getTimer()).

○ Out:

■ 0: (simtime_t) Elapsed time in seconds.

3.10.2 Scheduled Interrupts Interfaces

● timerSchedule: Shedule interrupt after a certain amount of time.

○ In:

■ 0: (simtime_t) Delay in seconds, rounded down to timer tics.

● timerScheduleRelative: Shedule interrupt after a certain amount of time relative to a
previously stored timer value.

○ In:

■ 0: (simtime_t) Delay in seconds, rounded down to timer tics.

■ 1: (simtime_t) Previously stored timer value (from getTimer())

● timerScheduleCancel: Cancels a scheduled interrupt.

3.11 Unified View of Interfaces and different modules

The unified view of interfaces and all other modules is shown in Figure 10. SMP and EMP
may connect to the horizontal layers of the protocol architecture via user defined interfaces.

Institute of Computer Technology, Vienna University of Technology 26/32

PAWiS Interface Specification Ver. 2.0

AL

sendreceive

RL

sendreceive

receive send

ML

send

receive send

listen carrierSense setPowerMode

PL

send listen carrierSense setPowerMode

CLAMP

update

subscribe

notifyonChange

publish

query

CLAMP
Database

CLAMP
Services

EMP

SMP

Key Mgmt. Encryption
Decryption

Mandatory
User-defined

Functional Call
Functional Interface

Node Management

Figure 10: Unified View of Interfaces and different Modules

3.12 Messages

TDB

3.13 Implementation

3.13.1 PAWiS Simulation Framework

The concept can be implemented in the PAWiS framework. This uses C++ classes to model
the node modules and so called functional interfaces to model interfaces (i.e. remote
procedure calls) between modules. These functional interfaces are utilized to implement the
communications between the network layers as well as to the CLAMP and other planes. Every
invocation is managed by the discrete event simulation environment utilizing a future event
list and a lot of overhead to deliver messages between the various modules.

Functional interfaces of a particular layer or plane are invoked by other modules with the
PAWiS Framework method invoke(module name, interface name, input parameters, output
parameters). Module name is the name of the module whose interface is being called.
Interface name is the name of the interface which is invoked. Third and fourth parameters
within invoke method are pointers to object ParameterList used to provide input and get
output respectively. For instance, assume that application layer wants to send a packet to the
routing layer. It can be achieved by method invoke(“Routing”, “send”, ¶mIn,
¶mOut).

Institute of Computer Technology, Vienna University of Technology 27/32

PAWiS Interface Specification Ver. 2.0

3.13.2 Resource constrained firmware

Obviously in the firmware different techniques have to be utilized for interfaces and
parameters to reduce complexity and overhead. All interfaces should be implemented as
regular function calls. CLAMP parameters which are only queried (i.e. no modules need
immediate notification of changes) should be implemented as global variables. For CLAMP
parameters with subscribed modules another approach is necessary. We propose callback
function calls here.

3.13.3 Firmware with RTOS

TDB

References

1. Vineet Srivastava and Mehul Motani, “CrossLayer Design: A Survey and the Road Ahead”, IEEE communication
magazine, December 2005

2. Vikas Kawadia and P. R. Kumar, “A Cautionary Perspective on Cross-Layer Design”, IEEE wireless communication, 2005
3. Vlado Handziski, Andreas K opke, Holger Karl, Adam Wolisz, “ A Common Wireless Sensor Network Architecture”, in Proc. 1.

GI/ITG Fachgespräch ``Sensornetze'' (Technical Report TKN-03-012 of the Telecommunications Networks Group, Technische
Universität Berlin), pp. 10-17, Berlin, July 2003

4. Polastre, J., Hui, J., Levis, P., Zhao, J., Culler, D., Shenker, S., and Stoica, I. 2005. A unifying link abstraction for wireless sensor
networks. In Proceedings of the 3rd international Conference on Embedded Networked Sensor Systems, San Diego, California, USA,
November 02 - 04, 2005.

5. Durresi, A., "Architectures for heterogeneous wireless sensor networks," Personal, Indoor and Mobile Radio Communications, 2005.
PIMRC 2005. IEEE 16th International Symposium on , vol.2, no.pp. 1289- 1296 Vol. 2, 11-14 Sept. 2005

6. www.zigbee.org
7. www.ieee802.org/15/pub/TG4.html
8. Rajnish Kumar , Santashil PalChaudhuri , David Johnson, Umakishore Ramachandran, “ Network Stack Architecture for Future

Sensors” available as Rice Technical Report 04-447 at http://www.cs.rice.edu/~santa/research/stack/stack.pdf
9. S. Mahlkench and S. A. Madani, “On architecture of low power wireless sensor networks for container tracking and monitoring

applications”, INDIN07, Vienna, Austria, 2007 [submitted]
10. M. Ulieru, S. Madani, "An Application of Industrial Agents to Concrete Bridge Monitoring," Proceedings of the 3rd International

Conference on Informatics in Control, Automation and Robotics (invited), 2006.
11. Seong-Moo Yoo, “ Sensor Network for Automobile Routing”, a report submitted by University Transportation system of Albama, 2004
12. A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao. Habitat monitoring: Application driver for wireless communications

technology. In Proceedings of the 2001 ACM SIGCOMM Workshop on Data Communications in Latin America and the Caribbean,
April 2001

13. Ning Xu, “ A survey on Sensor Network Application”, Computer Science Department, University of Southern California
14. Mani B. Srivastava, Richard R. Muntz, and Miodrag Potkonjak. Smart kindergarten: sensorbased wireless networks for smart

developmental problem-solving enviroments. In Mobile Computing and Networking, pages 132.138, 2001
15. Akyildiz, I.F.; Weilian Su; Sankarasubramaniam, Y.; Cayirci, E., "A survey on sensor networks," Communications Magazine, IEEE ,

vol.40, no.8pp. 102- 114, Aug 2002
16. Kemal Akkaya and Muhammad Yousaf, “ A survey on Routing protocols for wireless sensor networks” retrieved on November 03,

2006 from www.cs.umbc.edu/~kemal1/mypapers
17. W. Ye, J. Heidemann, D. Estrin, “Medium Access Control With Coordinated Adaptive Sleeping for Wireless Sensor Networks”, IEEE/

ACM Transactions on Networking, Volume: 12, Issue: 3, Pages:493 - 506, June 2004.
18. A. El-Hoiydi and J.-D. Decotignie, “WiseMAC: An Ultra Low Power MAC Protocol for the Downlink of InfrastructureWireless Sensor

Networks” in the Proceedings of the Ninth IEEE Symposium on Computers and Communication, ISCC’04, pages 244-251, Alexandria,
Egypt, June 2004

19. S. Mahlknecht, M. B¿ck, "CSMA-MPS: A Minimum Preamble Sampling MAC Protocol for Low Power Wireless Sensor Networks,"
Proceedings of the International Workshop on Factory Communication Systems, WFCS, pp. 73 - 80. , 2004

20. Wie Ye, John Heidemann, and Deborah Estrin, “An energy efficient mac protocol for wireless sensor networks.“, In proceedings of
IEEE Infocom, pp. 1567-1576, New York, NY, June 2002

21. Xue Yang, Nitin H. Vaidya, "A Wakeup Scheme for Sensor Networks: Achieving Balance between Energy Saving and End-to-end
Delay," rtas, p. 19, 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS'04), 2004

22. www.chipcon.com/files/220_Data_Sheet_1_2.pdf
23. Vijay T. Raisinghani, Sridhar Iyer, “Cross-layer design optimizations in wireless protocol stacks”, Computer Communications 27,

2004, pp. 720-724.
24. Rakhmatov, D.; Vrudhula, S.; Wallach, D.A., "A model for battery lifetime analysis for organizing applications on a pocket computer,"

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on , vol.11, no.6pp. 1019- 1030, Dec. 2003
25. Du, X.; Lin, F., "Efficient energy management protocol for target tracking sensor networks," Integrated Network Management, 2005.

IM 2005. 2005 9th IFIP/IEEE International Symposium on , vol., no.pp. 45- 58, 15-19 May 2005
26. Gao, Q., Blow, K. Holding, D. Marshall, Ian, “Analysis of Energy Conservation in Sensor Networks”, Wireless Networks, Volume

11, Number 6, pp. 787-794(8) ,November 2005
27. M. Handy and D. Timmermann, “Simulation of Mobile Wireless Networks with Accurate Modelling of Non-linear Battery Effects”, In

proceedings of Applied simulation and modeling (ASM), Marbella, Spain, 2003
28. C.F. Chiasserini, R.R. Rao, “Energy efficient battery management,” Proc. of Infoconi 2000, Tel Aviv, Israel, March 2000.
29. Perrig, A., Stankovic, J., and Wagner, D. 2004. Security in wireless sensor networks. Commun. ACM 47, 6 Jun. 2004

Institute of Computer Technology, Vienna University of Technology 28/32

PAWiS Interface Specification Ver. 2.0

30. www.ict.tuwien.ac.at/pawis
31. Perrig, A., Stankovic, J., and Wagner, D. 2004. Security in wireless sensor networks. Commun. ACM 47, 6 (Jun. 2004), pp. 53-57.
32. ISO/IEC Standard 7498-1:1994. Information technology – Open Systems Interconnection – Basic Reference Model: The Basic Model.
33. van Hoesel, L.; Nieberg, T.; Jian Wu; Havinga, P.J.M. “Prolonging the lifetime of wireless sensor networks by cross-layer interaction”,

Wireless Communications, IEEE [see also IEEE Personal Communications], Vol.11, Iss.6, Dec. 2004, Pages: 78- 86.
[Lim06] Su, W. and Lim, T. L. 2006. Cross-Layer Design and Optimization forWireless Sensor Networks. In Proceedings of the Seventh

ACIS international Conference on Software Engineering, Artificial intelligence, Networking, and Parallel/Distributed Computing
(Snpd'06) - Volume 00 (June 19 - 20, 2006). SNPD-SAWN. IEEE Computer Society, Washington, DC, 278-284

[Sri04] Vijay T. Raisinghani, Sridhar Iyer, “Cross-layer design optimizations in wireless protocol stacks”, Computer
Communications 27, 2004, pp. 720-724.

[Rai06] Raisinghani, V.T.; Iyer, S. “Cross-layer feedback architecture for mobile device protocol stacks”, Communications Magazine,
IEEE, Vol.44, Iss.1, Jan. 2006 Pages: 85- 92

[Ren06] Zeng, K., Ren, K., Lou, W., and Moran, P. J. 2006. Energy-aware geographic routing in lossy wireless sensor networks with
environmental energy supply. In Proceedings of the 3rd international Conference on Quality of Service in Heterogeneous
Wired/Wireless Networks (Waterloo, Ontario, Canada, August 07 - 09, 2006).

[Abo04] AbouGhazaleh, N.; Lanigan, P.; Gobriel, S.; Mosse, D.; Melhem, R. “Dynamic rate-selection for extending the lifetime of
energy-constrained networks”, Performance, Computing, and Communications, 2004 IEEE International Conference on, Vol., Iss.,
2004 Pages: 553- 558.

[Wan06] Wang, W., Peng, D., Wang, H., and Sharif, H. 2006. Study of an energy efficient multi rate scheme for wireless sensor
network MAC protocol. In Proceedings of the 2nd ACM international Workshop on Quality of Service &Amp; Security For Wireless
and Mobile Networks (Terromolinos, Spain, October 02 - 02, 2006).

[Abe01] Schurgers, C.; Aberthorne, O.; Srivastava, M.B., “Modulation scaling for energy aware communication systems”, Low
Power Electronics and Design, International Symposium on, 2001., Vol., Iss., 2001,Pages:96-99.

[Joe06] Inwhee Joe, “Optimal packet length with energy efficiency for wireless sensor networks”, Circuits and Systems, 2005.
ISCAS 2005. IEEE International Symposium on, Vol., Iss., 23-26 May 2005 Pages: 2955- 2957 Vol. 3.

[Fer06] Panichpapiboon, S.; Ferrari, G.; Tonguz, O.K. “Optimal Transmit Power in Wireless Sensor Networks”, Mobile Computing,
IEEE Transactions on, Vol.5, Iss.10, Oct. 2006 Pages: 1432- 1447.

[Car05] Carreras, I.; Chlamtac, I.; Woesner, H.; Zhang, H., “Nomadic sensor networks”, Proceeedings of the Second European Workshop
on Wireless Sensor Networks, Jan.-2 Feb. 2005 Pages: 166- 175.

Institute of Computer Technology, Vienna University of Technology 29/32

PAWiS Interface Specification Ver. 2.0

A List of Figures and Tables

Figure 1: Proposed protocol architecture for wireless sensor networks......................................8

Figure 2: Proposed protocol architecture for wireless sensor networks with connections
between different layers and hardware modules...9

Figure 3: Interfaces between AL and TL..11

4...13

Figure 5: Interfaces between TL and RL...13

Figure 6: Interfaces between AL and RL..15

Figure 7: Interfaces between RL and ML..16

Figure 8: Interfaces between ML and PL..17

Figure 9: Interfaces between different Modules and CLAMP..19

Figure 10: CLAMP architecture..20

Figure 11: Unified View of Interfaces and different Modules..27

Table 1: Description of symbols used in interface diagrams..4

Table 2: Parameter types used in the specifications..5

Table 3: Profile and Potential Use of CLAMP Parameters...21

Institute of Computer Technology, Vienna University of Technology 30/32

